- Accueil
- Glossaire des sciences du sport
Glossaire des sciences du sport
acclimatation (n. f.) Lien copié dans le presse-papiers
Girard, O., Brocherie, F., & Millet, G. P. (2017). Effects of altitude/hypoxia on single- and multiple-sprint performance: A comprehensive review. Sports Medicine, 47(10), 1931–1949. https://doi.org/10.1007/s40279-017-0733-z
Périard, J. D., Racinais, S., & Sawka, M. N. (2015). Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scandinavian Journal of Medicine & Science in Sports, 25(Suppl. 1), 20–38. https://doi.org/10.1111/sms.12408
acclimatation à la chaleur (n. f.) Lien copié dans le presse-papiers
Daanen, H. A. M., Racinais, S., & Périard, J. D. (2018). Heat acclimation decay and re-induction: A systematic review and meta-analysis. Sports Medicine, 48(2), 409–430. https://doi.org/10.1007/s40279-017-0808-x
Tyler, C. J., Reeve, T., Hodges, G. J., & Cheung, S. S. (2016). The effects of heat adaptation on physiology, perception and exercise performance in the heat: A meta-analysis. Sports Medicine, 46(11), 1699–1724. https://doi.org/10.1007/s40279-016-0538-5
acide lactique (n. m.) Lien copié dans le presse-papiers
Brooks, G. A. (2018). The science and translation of lactate shuttle theory. Cell Metabolism, 27(4), 757–785. https://doi.org/10.1016/j.cmet.2018.03.008
Cazorla, G., Léger, L., Petibois, C., & Bosquet, L. (2001). Lactate et exercice : mythes et réalités. Staps, 54(1), 63–76. https://shs.cairn.info/revue-staps-2001-1-page-63?lang=fr
Péronnet, F. (2013). Signification de la concentration de lactate plasmatique au cours de l’exercice. Movement & Sport Sciences, 79(1), 23. https://shs.cairn.info/revue-movement-and-sport-sciences-2013-1-page-23?lang=fr
acidose (n. f.) Lien copié dans le presse-papiers
Cairns, S. P. (2006). Lactic acid and exercise performance: Culprit or friend? Sports Medicine (Auckland, N.-Z.), 36(4), 279–291. https://link.springer.com/article/10.2165/00007256-200636040-00001
Robergs, R. A., Ghiasvand, F., & Parker, D. (2018). Biochemistry of exercise-induced metabolic acidosis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 314(3), R502–R515. https://pubmed.ncbi.nlm.nih.gov/15308499/
action musculaire (n. f.) Lien copié dans le presse-papiers
Enoka, R. M., & Duchateau, J. (2017). Rate coding and the control of muscle force. Cold Spring Harbor Perspectives in Medicine, 7(10), a029702. https://pubmed.ncbi.nlm.nih.gov/28348173/
Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews, 81(4), 1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725
action musculaire concentrique (n. f.) Lien copié dans le presse-papiers
Enoka, R. M. (2025). Neuromechanics of human movement (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/neuromechanics-of-human-movement-6th-edition?srsltid=AfmBOopCF0_zJpMol3sLnzVVFNzhB_JLAIQIz1PzPhwliaCU65ZjMSIp#tab-description
Green, L. A., & Gabriel, D. A. (2018). The cross education of strength and skill following unilateral strength training in the upper and lower limbs. Journal of Neurophysiology, 120(2), 468–479. https://journals.physiology.org/doi/full/10.1152/jn.00116.2018
action musculaire excentrique (n. f.) Lien copié dans le presse-papiers
Douglas, J., Pearson, S., Ross, A., & McGuigan, M. (2017). Eccentric exercise: Physiological characteristics and acute responses. Sports Medicine, 47(4), 663–675. https://doi.org/10.1007/s40279-016-0624-8
Enoka, R. M. (2025). Neuromechanics of human movement (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/neuromechanics-of-human-movement-6th-edition?srsltid=AfmBOopCF0_zJpMol3sLnzVVFNzhB_JLAIQIz1PzPhwliaCU65ZjMSIp#tab-description
action musculaire isométrique (n. f.) Lien copié dans le presse-papiers
Enoka, R. M. (2025). Neuromechanics of human movement (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/neuromechanics-of-human-movement-6th-edition?srsltid=AfmBOopCF0_zJpMol3sLnzVVFNzhB_JLAIQIz1PzPhwliaCU65ZjMSIp#tab-description
Lum, D., & Barbosa, T. M. (2019). Brief Review: Effects of isometric strength training on strength and dynamic performance. International Journal of Sports Medicine, 40(6), 363–375. https://doi.org/10.1055/a-0863-4539
adénosine triphosphate (ATP) (n. f.) Lien copié dans le presse-papiers
González-Marenco, R., Estrada-Sánchez, I. A., Medina-Escobedo, M., Chim-Aké, R., & Lugo, R. (2024). The effect of oral adenosine triphosphate (ATP) supplementation on anaerobic exercise in healthy resistance-trained individuals: A systematic review and meta-analysis. Sports, 12(3), 82. www.mdpi.com/2075-4663/12/3/82
Hargreaves, M., & Spriet, L. L. (2020). Skeletal muscle energy metabolism during exercise. Nature Metabolism, 2(9), 817–828. www.nature.com/articles/s42255-020-0251-4
aérobie (adj.) Lien copié dans le presse-papiers
Bassett, D. R., Jr, & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and Science in Sports and Exercise, 32(1), 70–84. https://doi.org/10.1097/00005768-200001000-00012
Poole, D. C., Rossiter, H. B., Brooks, G. A., & Gladden, L. B. (2021). The anaerobic threshold: 50+ years of controversy. Journal of Physiology, 599(3), 737–767. https://doi.org/10.1113/JP279963
aérodynamique (adj.) Lien copié dans le presse-papiers
Blocken, B., Defraeye, T., Koninckx, E., Carmeliet, J., & Hespel, P. (2013). CFD simulations of the aerodynamic drag of two drafting cyclists. Computers & Fluids, 71(C), 435–445. www.sciencedirect.com/science/article/pii/S0045793012004446?via%3Dihub
Defraeye, T., Blocken, B., & Carmeliet, J. (2010). Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests. Journal of Biomechanics, 43(7), 1262–1268. https://doi.org/10.1016/j.jbiomech.2010.01.025
aérodynamique (n. f.) Lien copié dans le presse-papiers
Blocken, B., Defraeye, T., Koninckx, E., Carmeliet, J., & Hespel, P. (2013). CFD simulations of the aerodynamic drag of two drafting cyclists. Journal of Biomechanics, 46(1), 259–267. www.sciencedirect.com/science/article/pii/S0045793012004446
Defraeye, T., Blocken, B., & Carmeliet, J. (2010). Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests. Journal of Biomechanics, 43(7), 1262–1268. https://doi.org/10.1016/j.jbiomech.2010.01.025
affûtage (n. m.) Lien copié dans le presse-papiers
Bosquet, L., Montpetit, J., Arvisais, D., & Mujika, I. (2007). Effects of tapering on performance: A meta-analysis. Medicine & Science in Sports & Exercise, 39(8), 1358–1365. https://doi.org/10.1249/mss.0b013e31806010e0
Mujika, I., & Padilla, S. (2003). Scientific bases for precompetition tapering strategies. Medicine and Science in Sports and Exercise, 35(7), 1182–1187. https://doi.org/10.1249/01.MSS.0000074448.73931.11
altitude (n. f.) Lien copié dans le presse-papiers
Lundby, C., & Robach, P. (2016). Does ’altitude training’ increase exercise performance in elite athletes?. Experimental Physiology, 101(7), 783–788. https://doi.org/10.1113/EP085579
Millet, G. P., & Debevec, T. (2020). CrossTalk proposal: Barometric pressure, independent of PO₂, is the forgotten parameter in altitude physiology and mountain medicine. The Journal of Physiology, 598(5), 893–896. https://doi.org/10.1113/JP278673
Péronnet, F., Thibault, G., & Cousineau, D. L. (1991). A theoretical analysis of the effect of altitude on running performance. Journal of Applied Physiology, 70(1), 399–404. https://journals.physiology.org/doi/abs/10.1152/jappl.1991.70.1.399
amotivation (n. f.) Lien copié dans le presse-papiers
Alkasasbeh, W. J., & Akroush, S. H. (2025). Sports motivation: A narrative review of psychological approaches to enhance athletic performance. Frontiers in Psychology, 16(1645274), 1645274. www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2025.1645274/full
Ryan, R. M., & Deci, E. L. (2017). Self-determination theory: Basic psychological needs in motivation, development, and wellness. Guilford Press. https://doi.org/10.1521/978.14625/28806
Pelletier, L. G., Rocchi, M. A., Vallerand, R. J., Deci, E. L., & Ryan, R. M. (2013). Validation of the revised sport motivation scale (SMS-II). Psychology of Sport and Exercise, 14(3), 329–341. https://doi.org/10.1016/j.psychsport.2012.12.002
anabolisme (n. m.) Lien copié dans le presse-papiers
Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Bretscher, A., Ploegh, H., Martin, K. C., Yaffe, M., & Amon, A. (2021). Molecular cell biology (9e éd.). W. H. Freeman. www.macmillanlearning.com/ed/uk/product/Molecular-Cell-Biology–9th-edition/p/1319365485
McArdle, W. D., Katch, F. I., & Katch, V. L. (2023). Exercise physiology: Nutrition, energy, and human performance (9e éd.). Wolters Kluwer. https://shop.lww.com/Exercise-Physiology/p/9781975217297
anaérobie (adj.) Lien copié dans le presse-papiers
Gastin, P. B. (2001). Energy system interaction and relative contribution during maximal exercise. Sports Medicine, 31(10), 725–741. https://doi.org/10.2165/00007256-200131100-00003
Grassi, B., Rossiter, H. B., & Zoladz, J. A. (2015). Skeletal muscle fatigue and decreased efficiency: Two sides of the same coin? Exercise and Sport Sciences Reviews, 43(2), 75–83. https://doi.org/10.1249/JES.0000000000000043
anatomie fonctionnelle (n. f.) Lien copié dans le presse-papiers
loyd, R. T. (2025). Manual of structural kinesiology (22e éd.). McGraw-Hill Education. www.mheducation.com/highered/product/manual-of-structural-kinesiology-floyd.html
Neumann, D. A. (2025). Kinesiology of the musculoskeletal system: Foundations for rehabilitation (4e éd.). Elsevier. https://evolve.elsevier.com/cs/product/9780323718592?role=student
anthropométrie (n. f.) Lien copié dans le presse-papiers
Marfell-Jones, M., Stewart, A., Olds, T., & de Ridder, J. H. (2019). International Standards for Anthropometric Assessment. International Society for the Advancement of Kinanthropometry (ISAK). www.isak.global/
Norton, K., & Olds, T. (Eds.). (1996). Anthropometrica: A textbook of body measurement for sports and health courses. University of New South Wales Press. https://openlibrary.org/books/OL617522M/Anthropometrica
anxiété (n. f.) Lien copié dans le presse-papiers
Cheng, W. N. K., Hardy, L., & Markland, D. (2009). Toward a three-dimensional conceptualization of performance anxiety: Rationale and initial measurement development. Psychology of Sport and Exercise, 10(2), 271–278. https://doi.org/10.1016/j.psychsport.2008.08.001
Craft, L. L., Magyar, T. M., Becker, B. J., & Feltz, D. L. (2003). The relationship between the Competitive State Anxiety Inventory-2 and sport performance: A meta-analysis. Journal of Sport & Exercise Psychology, 25(1), 44–65. https://doi.org/10.1123/jsep.25.1.44
Neil, R., Hanton, S., Mellalieu, S. D., & Fletcher, D. (2011). Competition stress and emotions in sport performers: The role of further appraisals. Psychology of Sport and Exercise, 12(4), 460–470. https://doi.org/10.1016/j.psychsport.2011.02.001
Weinberg, R. S. & Gould, D. (2023). Foundations of sport and exercise psychology (8e éd.). Human Kinetics. https://books.google.ca/books?hl=en&lr=&id=GHGLEAAAQBAJ&oi=fnd&pg=PR3&dq=Foundations+of+Sport+and+Exercise+Psychology+(2023)&ots=Ju-AZnQx4_&sig=ZNKjOFgaQo3BU5P8NjXEcmxh8g4#v=onepage&q=Foundations%20of%20Sport%20and%20Exercise%20Psychology%20(2023)&f=false
apprentissage moteur (n. m.) Lien copié dans le presse-papiers
Fitts, P.M., & Posner, M.I. (1967). Human performance. Belmont, CA : Brooks/Cole Pub. Co. https://ia801502.us.archive.org/8/items/in.ernet.dli.2015.461945/2015.461945.Human-Performance_text.pdf
Krakauer, J. W., Hadjiosif, A. M., Xu, J., Wong, A. L., & Haith, A. M. (2019). Motor learning. Comprehensive Physiology, 9(2), 613–663. https://doi.org/10.1002/cphy.c170043
aptitude aérobie (n. f.) Lien copié dans le presse-papiers
Bassett, D. R., Jr, & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and Science in Sports and Exercise, 32(1), 70–84. https://doi.org/10.1097/00005768-200001000-00012
Joyner, M. J., & Coyle, E. F. (2007). Endurance exercise performance: The physiology of champions. Journal of Physiology, 586(1), 35–44. 10.1113/jphysiol.2007.143834
Poole, D. C., Wilkerson, D. P., & Jones, A. M. (2008). Validity of criteria for establishing maximal oxygen uptake during ramp exercise tests. European Journal of Applied Physiology, 102(4), 403–410. https://link.springer.com/article/10.1007/s00421-007-0596-3
aptitude cardiorespiratoire (n. f.) Lien copié dans le presse-papiers
Kodama, S., Saito, K., Tanaka, S., Maki, M., Yachi, Y., Asumi, M., … Sone, H. (2009). Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events: A meta-analysis. JAMA, 301(19), 2024–2035 https://doi.org/10.1001/jama.2009.681
Ross, R., Blair, S. N., Arena, R., Church, T. S., Després, J.-P., Franklin, B. A., … Powell, K. E. (2016). Importance of assessing cardiorespiratory fitness in clinical practice: A case for fitness as a clinical vital sign. Circulation, 134(24), e653–e699 https://doi.org/10.1161/CIR.0000000000000461
athlète (n.) Lien copié dans le presse-papiers
Variantes régionales : France : athlète (dans certains contextes francophones, particulièrement en France, athlète peut désigner plus spécifiquement une personne pratiquant l’athlétisme, alors qu’en Amérique du Nord, il désigne plus largement tout sportif qui s’entraîne et qui participe à des compétitions)
Holt, N. L., & Neely, K. C. (2011). Positive youth development through sport: A review. Revista de Iberoamericana de Psicología del Ejercicio y el Deporte, 6(2), 299–316. https://accedacris.ulpgc.es/handle/10553/7852
McAuley, A. B. T., Baker, J., & Kelly, A. L. (2022). Defining “elite” status in sport: From chaos to clarity. German Journal of Exercise and Sport Research, 52(1), 193–197. https://link.springer.com/article/10.1007/s12662-021-00737-3
McKay, A. K. A., Stellingwerff, T., Smith, E. S., Martin, D. T., Mujika, I., Goosey-Tolfrey, V. L., Sheppard, J., & Burke, L. M. (2022). Defining training and performance caliber: A participant classification framework. International Journal of Sports Physiology and Performance, 17(2), 317–331. https://journals.humankinetics.com/view/journals/ijspp/17/2/article-p317.xml
Wylleman, P., Reints, A., & De Knop, P. (2013). A developmental and holistic perspective on athletic career development. In: Sotiriadou, P. & De Bosscher, V. (eds.), Managing high performance sport (pp. 159–182). Routledge. www.taylorfrancis.com/chapters/edit/10.4324/9780203132388-11/developmental-holistic-perspective-athletic-career-development-paul-wylleman-anke-reints-paul-de-knop
attention (n. f.) Lien copié dans le presse-papiers
Nideffer, R. M. (1976). Test of attentional and interpersonal style. Journal of Personality and Social Psychology, 34(3), 394–404. https://doi.org/10.1037/0022-3514.34.3.394
Wilson, M. R., Vine, S. J., & Wood, G. (2009). The influence of anxiety on visual attentional control in basketball free throw shooting. Journal of Sport & Exercise Psychology, 31(2), 152–168. https://doi.org/10.1123/jsep.31.2.152
auto-efficacité (n. f.) Lien copié dans le presse-papiers
Bandura, A. (1997). Self-efficacy: The exercise of control (Vol. 11). Freeman. https://fr.scribd.com/document/392014248/Self-efficacy-The-Exercise-of-Control-1997
Moritz, S. E., Feltz, D. L., Fahrbach, K. R., & Mack, D. E. (2000). The relation of self-efficacy measures to sport performance: A meta-analytic review. Research Quarterly for Exercise and Sport, 71(3), 280–294. https://doi.org/10.1080/02701367.2000.10608908
biomécanique du sport (n. f.) Lien copié dans le presse-papiers
Knudson, D. (2021). Fundamentals of biomechanics (3ᵉ éd.). Springer. https://link.springer.com/book/10.1007/978-3-030-51838-7
Zatsiorsky, V. M., & Prilutsky, B. I. (2012). Biomechanics of skeletal muscles. Human Kinetics. https://books.google.ca/books?hl=en&lr=&id=Lu96DwAAQBAJ&oi=fnd&pg=PT9&dq=Zatsiorsky,+V.+M.,+%26+Prilutsky,+B.+I.+(2012).+Biomechanics+of+skeletal+muscles.+Human+Kinetics.&ots=rHOVzA9kyY&sig=kmROOK_6I4YauWdRfshjrti_r9c#v=onepage&q=Zatsiorsky%2C%20V.%20M.%2C%20%26%20Prilutsky%2C%20B.%20I.%20(2012).%20Biomechanics%20of%20skeletal%20muscles.%20Human%20Kinetics.&f=false
biométrie (n. f.) Lien copié dans le presse-papiers
Briand, J., Mangin, T., Tremblay, J., & Pageaux, B. (2025). Bridging inductive and deductive reasoning: A proposal to enhance the evaluation and development of models in sports and exercise science. Sports Medicine, 55(11), 2707–2719. https://doi.org/10.1007/s40279-025-02289-0
Briand, J., Deguire, S., Gaudet, S., & Bieuzen, F. (2022). Monitoring variables influence on random forest models to forecast injuries in short-track speed skating. Frontiers in Sports and Active Living, 4, Article 896828. https://doi.org/10.3389/fspor.2022.896828
Estivalet, M., & Brisson, P. (2008). The engineering of sport 7. Springer. https://books.google.ca/books/about/The_Engineering_of_Sport_7.html?id=-PppDQbDCHQC&redir_esc=y
Halson, S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports Medicine, 44(Suppl 2), 139–147. https://link.springer.com/article/10.1007/s40279-014-0253-z
Nithya, N., & Nallavan, G. (2021). Role of wearables in sports based on activity recognition and biometric parameters: A survey. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), 1700–1705. https://ieeexplore.ieee.org/document/9395761
bras de levier (n. m.) Lien copié dans le presse-papiers
Ackland, T. R., Elliott, B., & Bloomfield, J. (2009). Applied anatomy and biomechanics in sport. Human Kinetics. https://books.google.ca/books/about/Applied_Anatomy_and_Biomechanics_in_Spor.html?id=5MTcORR6lvUC&redir_esc=y
Hall, S. J. (2025). Basic biomechanics (9ᵉ éd.). McGraw-Hill Education. www.mheducation.com/highered/product/Basic-Biomechanics-Hall.html
Knudson, D. (2021). Fundamentals of biomechanics (3ᵉ éd.). Springer. https://link.springer.com/book/10.1007/978-3-030-51838-7
calorie (n. f.) Lien copié dans le presse-papiers
Variantes régionales : France : calorie (usage courant, mais joule dans les textes scientifiques)
Food and Agriculture Organization of the United Nations, World Health Organization, & United Nations University. (2004). Human energy requirements: Report of a Joint FAO/WHO/UNU Expert Consultation. FAO Food and Nutrition Technical Report Series, 1. www.fao.org/4/y5686e/y5686e00.htm
Xie, Y., Gu, Y., Li, Z., Zhang, L., & Hei, Y. (2025). Comparing exercise modalities during caloric restriction: A systematic review and network meta-analysis on body composition. Frontiers in Nutrition, 12, 1579024. https://doi.org/10.3389/fnut.2025.1579024
capacité anaérobie (n. f.) Lien copié dans le presse-papiers
Briand, J., di Prampero, P. E., Osgnach, C., Thibault, G., & Tremblay, J. (2025). Quantifying metabolic energy contributions in sprint running: A novel bioenergetic model. European Journal of Applied Physiology, 125(12), 3521–3541. https://doi.org/10.1007/s00421-025-05831-0
Gastin, P. B. (2001). Energy system interaction and relative contribution during maximal exercise. Sports Medicine, 31(10), 725–741. https://doi.org/10.2165/00007256-200131100-00003
catabolisme (n. m.) Lien copié dans le presse-papiers
Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Bretscher, A., Ploegh, H., Martin, K. C., Yaffe, M., & Amon, A. (2021). Molecular cell biology (9e éd.). W. H. Freeman. www.macmillanlearning.com/ed/uk/product/Molecular-Cell-Biology–9th-edition/p/1319365485
McArdle, W. D., Katch, F. I., & Katch, V. L. (2023). Exercise physiology: nutrition, energy, and human performance (9e éd.). Wolters Kluwer. https://shop.lww.com/Exercise-Physiology/p/9781975217297
centrale inertielle (n. f.) Lien copié dans le presse-papiers
Camomilla, V., Bergamini, E., Fantozzi, S., & Vannozzi, G. (2018). Trends supporting the in-field use of wearable inertial sensors for sport performance evaluation: A systematic review. Sensors (Basel, Switzerland), 18(3). https://doi.org/10.3390/s18030873
Picerno, P. (2017). 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches. Gait & Posture, 51, 239–246. https://doi.org/10.1016/j.gaitpost.2016.11.008
centre de gravité (n. m.) Lien copié dans le presse-papiers
Hall, S. J. (2025). Basic biomechanics (9ᵉ éd.). McGraw-Hill Education. www.mheducation.com/highered/product/Basic-Biomechanics-Hall.html
Knudson, D. (2021). Fundamentals of biomechanics (3ᵉ éd.). Springer. https://link.springer.com/book/10.1007/978-3-030-51838-7
Winter, D. A. (2009). Biomechanics and motor control of human movement. John wiley & sons. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470549148?msockid=19e7d0fdf4b9650e2062c4c6f56f64dc
centre de masse (n. m.) Lien copié dans le presse-papiers
Hall, S. J. (2025). Basic biomechanics (9ᵉ éd.). McGraw-Hill Education. www.mheducation.com/highered/product/Basic-Biomechanics-Hall.html
Winter, D. A. (2009). Biomechanics and motor control of human movement. John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470549148?msockid=19e7d0fdf4b9650e2062c4c6f56f64dc
charge d’entraînement (n. f.) Lien copié dans le presse-papiers
Bourdon, P. C., Cardinale, M., Murray, A., Gastin, P., Kellmann, M., Varley, M. C., Gabbett, T. J., Coutts, A. J., Burgess, D. J., Gregson, W., & Cable, N. T. (2017). Monitoring athlete Training loads: Consensus statement. International Journal of Sports Physiology and Performance, 12(Suppl 2), S2161–S2170. https://journals.humankinetics.com/view/journals/ijspp/12/s2/article-pS2-161.xml
Impellizzeri, F. M., Marcora, S. M., & Coutts, A. J. (2019). Internal and external training load: 15 years on. International Journal of Sports Physiology and Performance, 14(2), 270–273. https://doi.org/10.1123/ijspp.2018-0935
cinématique (n. f.) Lien copié dans le presse-papiers
Hall, S. J. (2025). Basic biomechanics (9ᵉ éd.). McGraw-Hill Education. www.mheducation.com/highered/product/Basic-Biomechanics-Hall.html
Knudson, D. (2021). Fundamentals of biomechanics (3ᵉ éd.). Springer. https://link.springer.com/book/10.1007/978-3-030-51838-7
Robertson, D. G. E., Caldwell, G. E., Hamill, J., Kamen, G., & Whittlesey, S. N. (2013). Research methods in biomechanics (2e éd.). Human Kinetics. https://books.google.ca/books/about/Research_Methods_in_Biomechanics.html?id=_u56DwAAQBAJ&redir_esc=y
Winter, D. A. (2009). Biomechanics and motor control of human movement. John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470549148?msockid=19e7d0fdf4b9650e2062c4c6f56f64dc
cinétique (n. f.) Lien copié dans le presse-papiers
Hall, S. J. (2025). Basic biomechanics (9ᵉ éd.). McGraw-Hill Education. www.mheducation.com/highered/product/Basic-Biomechanics-Hall.html
Knudson, D. (2021). Fundamentals of biomechanics (3ᵉ éd.). Springer. https://link.springer.com/book/10.1007/978-3-030-51838-7
Robertson, D. G. E., Caldwell, G. E., Hamill, J., Kamen, G., & Whittlesey, S. N. (2013). Research methods in biomechanics (2e éd.). Human Kinetics. https://books.google.ca/books/about/Research_Methods_in_Biomechanics.html?id=_u56DwAAQBAJ&redir_esc=y
Winter, D. A. (2009). Biomechanics and motor control of human movement. John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470549148?msockid=19e7d0fdf4b9650e2062c4c6f56f64dc
compétence motrice (n. f.) Lien copié dans le presse-papiers
Barnett, L. M., Stodden, D., Cohen, K. E., Smith, J. J., Lubans, D. R., Morgan, P. J., … & Salmon, J. (2016). Fundamental movement skills: An important focus. Journal of Teaching in Physical Education, 35(3), 219–225. https://doi.org/10.1123/jtpe.2014-0209
Dudley, D. A. (2015). A conceptual model of observed physical literacy. The Physical Educator, 72(5), 236–260. https://doi.org/10.18666/TPE-2015-V72-I5-6020
Stodden, D. F., Goodway, J., Langendorfer, S., Roberton, M. A., Rudisill, M., Garcia, C., & Garcia, L. E. (2008). A developmental perspective on the role of motor skill competence in physical activity. Quest, 60(2), 290–306. https://doi.org/10.1080/00336297.2008.10483582
Whitehead, M. (Éd.) (2010). Physical literacy: Throughout the lifecourse. Routledge. www.taylorfrancis.com/books/edit/10.4324/9780203881903/physical-literacy-margaret-whitehead
composition corporelle (n. f.) Lien copié dans le presse-papiers
Ackland, T. R., Lohman, T. G., Sundgot-Borgen, J., Maughan, R. J., Meyer, N. L., Stewart, A. D., & Müller, W. (2012). Current status of body composition assessment in sport: Review and position statement on behalf of the IOC Medical Commission Working Group on Body Composition Health and Performance. Sports Medicine, 42(3), 227–249. https://doi.org/10.2165/11597140-000000000-00000
Heymsfield, S. B., & Wadden, T. A. (2017). Mechanisms, pathophysiology, and management of obesity. New England Journal of Medicine, 376(3), 254–266. https://doi.org/10.1056/NEJMra1514009
Kyle, U. G., et al. (2004). Bioelectrical impedance analysis—Part I: Review of principles and methods. Clinical Nutrition, 23(5), 1226–1243. https://doi.org/10.1016/j.clnu.2004.06.004
concentration (n. f.) Lien copié dans le presse-papiers
Moran, A. (2016). The psychology of concentration in sport performers: A cognitive analysis. Routledge. https://doi.org/10.4324/9781315784946
Wilson, M. R., Vine, S. J., & Wood, G. (2009). The influence of anxiety on visual attentional control in basketball free throw shooting. Journal of Sport & Exercise Psychology, 31(2), 152–168. https://doi.org/10.1123/jsep.31.2.152
condition physique (n. f.) Lien copié dans le presse-papiers
Bouchard, C., Blair, S. N., & Haskell, W. L. (2012). Physical activity and health (2e éd.). Human Kinetics. https://books.google.ca/books?hl=en&lr=&id=tO96DwAAQBAJ&oi=fnd&pg=PT5&dq=Bouchard,+C.,+Blair,+S.+N.,+%26+Haskell,+W.+L.+(2012).+Physical+activity+and+health+(2nd+ed.).+Human+Kinetics.&ots=12DY4JocB3&sig=13trHkJzTzR0nibTiDBGiWeAnBU#v=onepage&q&f=false
Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Reports, 100(2), 126–131. https://pmc.ncbi.nlm.nih.gov/articles/PMC1424733/
Ortega, F. B., Ruiz, J. R., Castillo, M. J., & Sjöström, M. (2008). Physical fitness in childhood and adolescence: A powerful marker of health. International Journal of Obesity, 32(1), 1–11. https://doi.org/10.1038/sj.ijo.0803774
consommation maximale d’oxygène (V̇O₂max) (n. f.) Lien copié dans le presse-papiers
Bassett, D. R., Jr, & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and Science in Sports and Exercise, 32(1), 70–84. https://doi.org/10.1097/00005768-200001000-00012
Levine, B. D. (2008). V̇O₂max: What do we know, and what do we still need to know? The Journal of Physiology, 586(1), 25–34. https://pubmed.ncbi.nlm.nih.gov/18006574/
Poole, D. C., Wilkerson, D. P., & Jones, A. M. (2008). Validity of criteria for establishing maximal oxygen uptake during ramp exercise tests. European Journal of Applied Physiology, 102(4), 403–410. https://link.springer.com/article/10.1007/s00421-007-0596-3
contraction musculaire (n. f.) Lien copié dans le presse-papiers
Enoka, R. M., & Duchateau, J. (2017). Rate coding and the control of muscle force. Cold Spring Harbor Perspectives in Medicine, 7(10), a029702. https://pubmed.ncbi.nlm.nih.gov/28348173/
Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews, 81(4), 1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725
contrôle moteur (n. m.) Lien copié dans le presse-papiers
Franklin, D. W., & Wolpert, D. M. (2011). Computational mechanisms of sensorimotor control. Neuron, 72(3), 425–442. https://doi.org/10.1016/j.neuron.2011.10.006
Latash, M. L. (2012). Fundamentals of motor control. Academic Press. DOI: 10.1016/C2011-0-05693-4
Schmidt, R. A., & Lee, T. D. (2020). Motor learning and performance: From principles to application (6ᵉ éd.). Human Kinetics. https://canada.humankinetics.com/products/motor-learning-and-performance-6th-edition-with-web-study-guide-loose-leaf-edition?srsltid=AfmBOorhsaoMXp1f4jASX6bXAWZLKn9IgsHe5gNxWuxJUt4UGL6PCW5B
Shumway-Cook, A., & Woollacott, M. H. (2023). Motor control: Translating research into clinical practice (6ᵉ éd.). Wolters Kluwer. https://shop.lww.com/Motor-Control/p/9781975209568?srsltid=AfmBOorGywBhxDyV0KeEJyQTFynVkkuPiKWF9EOlhF43xMWRgpu9MvEh
coordination (n. f.) Lien copié dans le presse-papiers
Davids, K., Glazier, P., Araujo, D., & Bartlett, R. (2003). Movement systems as dynamical systems: The functional role of variability and its implications for sports medicine. Sports Medicine, 33(4), 245–260. https://doi.org/10.2165/00007256-200333040-00001
Latash, M. L. (2010). Motor synergies and the equilibrium-point hypothesis. Motor Control, 14(3), 294–322. https://doi.org/10.1123/mcj.14.3.294
couple (n. m.) Lien copié dans le presse-papiers
Hall, S. J. (2025). Basic biomechanics (9ᵉ éd.). McGraw-Hill Education. www.mheducation.com/highered/product/Basic-Biomechanics-Hall.html
Robertson, D. G. E., Caldwell, G. E., Hamill, J., Kamen, G., & Whittlesey, S. N. (2013). Research methods in biomechanics (2e éd.). Human Kinetics. https://books.google.ca/books/about/Research_Methods_in_Biomechanics.html?id=_u56DwAAQBAJ&redir_esc=y
Winter, D. A. (2009). Biomechanics and motor control of human movement. John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470549148?msockid=19e7d0fdf4b9650e2062c4c6f56f64dc
courbatures musculaires (n. f. pl.) Lien copié dans le presse-papiers
Cheung, K., Hume, P., & Maxwell, L. (2003). Delayed onset muscle soreness: Treatment strategies and performance factors. Sports Medicine, 33(2), 145–164. https://link.springer.com/article/10.2165/00007256-200333020-00005
Howatson, G., & van Someren, K. A. (2008). The prevention and treatment of exercise-induced muscle damage. Sports Medicine, 38(6), 483–503. https://doi.org/10.2165/00007256-200838060-00004
Hyldahl, R. D., & Hubal, M. J. (2014). Lengthening our perspective: Morphological, cellular, and molecular responses to eccentric exercise. Muscle & Nerve, 49(2), 155–170. https://doi.org/10.1002/mus.24077
Owens, D. J., Twist, C., & Cobley, J. N. (2019). Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions? European Journal of Sport Science, 19(1), 71–85. https://doi.org/10.1080/17461391.2018.1505957
Paulsen, G., Crameri, R., Benestad, H. B., Fjeld, J. G., Mørkrid, L., Hallén, J., & Raastad, T. (2010). Time course of leukocyte accumulation in human muscle after eccentric exercise. Medicine and Science in Sports and Exercise, 42(1), 75–85.
culture de l’activité physique (n. f.) Lien copié dans le presse-papiers
Active Aging Canada – Vieillir Activement Canada. (2020). La kinésiculture chez les 65 ans et plus. Rapport de recherche, octobre 2020. www.activeagingcanada.ca/assets/pdf_fr/la-kinesiculture/La-kinesiculture-chez-les-65-ans-et-plus.pdf.
Whitehead, M. (Éd.) (2010). Physical literacy: Throughout the lifecourse. Routledge. www.taylorfrancis.com/books/edit/10.4324/9780203881903/physical-literacy-margaret-whitehead
débit cardiaque (n. m.) Lien copié dans le presse-papiers
Kenney, W. L., Wilmore, J. H., & Costill, D. L. (2024). Physiology of sport and exercise (9e éd.). Human kinetics. https://canada.humankinetics.com/products/physiology-of-sport-and-exercise-9th-edition-with-hkpropel-access-loose-leaf-edition?srsltid=AfmBOoob1JCFIRirj5DCpk11RfPfG-t-u0ySo6pLziceGW8xmD2RVeqL
Levine, B. D. (2008). V̇O₂max: what do we know, and what do we still need to know?: Maximal oxygen uptake. The Journal of Physiology, 586(1), 25–34. https://pubmed.ncbi.nlm.nih.gov/18006574/
Warburton, D. E., & Bredin, S. S. D. (2017). Health benefits of physical activity: A systematic review of current systematic reviews. Current Opinion in Cardiology, 32(5), 541–556. https://doi.org/10.1097/HCO.0000000000000437
déficit énergétique relatif dans le sport (n. m.) Lien copié dans le presse-papiers
Mountjoy, M., et al. (2018). International Olympic Committee (IOC) consensus statement on relative energy deficiency in sport (RED-S): 2018 update. International Journal of Sport Nutrition and Exercise Metabolism, 28(4), 316-331.
Stellingwerff, T., et al. (2021). Overtraining syndrome (OTS) and relative energy deficiency in sport (RED-S): shared pathways, symptoms and complexities. Sports Medicine, 51(11), 2251-2280. https://doi.org/10.1007/s40279-021-01491-0
degré de difficulté (n. m.) Lien copié dans le presse-papiers
Davids, K., Button, C., & Bennett, S. (2008). Dynamics of skill acquisition: A constraints-led approach. Human Kinetics. https://psycnet.apa.org/record/2008-04551-000
Fédération Internationale de Gymnastique (FIG). (2022). Code of points – Women’s Artistic gymnastics. www.gymnastics.sport
Magill, R. A., & Anderson, D. I. (2017). Motor learning and control: Concepts and applications (11e éd.). McGraw-Hill. www.mheducation.com/highered/product/motor-learning-and-control-concepts-and-applications-magill.html?viewOption=student
Schmidt, R. A., & Lee, T. D. (2019). Motor control and learning: A behavioral emphasis (6e éd.). Human Kinetics. https://books.google.ca/books/about/Motor_Control_and_Learning.html?id=EvJ6DwAAQBAJ&redir_esc=y
degré de difficulté globale d’une séance (n. m.) Lien copié dans le presse-papiers
Foster, C. et al. (1998). Monitoring training in athletes with reference to overtraining syndrome. Medicine & Science in Sports & Exercise, 30(7), 1164–1168. https://doi.org/10.1097/00005768-199807000-00023
Impellizzeri, F. M., Rampinini, E., & Marcora, S. M. (2005). Physiological assessment of aerobic training in soccer. Journal of Sports Sciences, 23(6), 583–592. https://doi.org/10.1080/02640410400021278
Soligard, T. et al. (2016). How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. British Journal of Sports Medicine, 50(17), 1030–1041 https://doi.org/10.1136/bjsports-2016-096581.
densité minérale osseuse (n. f.) Lien copié dans le presse-papiers
Tenforde, A. S., & Fredericson, M. (2011). Influence of sports participation on bone health in the young athlete: A review of the literature. PM&R, 3(9), 861–867. https://doi.org/10.1016/j.pmrj.2011.05.019
Weaver, C. M., et al. (2016). The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporosis international, 27(4), 1281-1386. https://doi.org/10.1007/s00198-015-3440-3
dépense énergétique (n. f.) Lien copié dans le presse-papiers
Heymsfield, S. B., & Wadden, T. A. (2017). Mechanisms, pathophysiology, and management of obesity. New England Journal of Medicine, 376(3), 254–266. https://doi.org/10.1056/NEJMra1514009
Müller, M. J., Geisler, C., Hübers, M., Pourhassan, M., Braun, W., Bosy-Westphal, A. (2018). Normalizing resting energy expenditure across the life course in humans: Challenges and hopes. European Journal of Clinical Nutrition, 72(5), 628–637. https://pubmed.ncbi.nlm.nih.gov/29748655/
Speakman, J. R., & Selman, C. (2003). Physical activity and resting metabolic rate. Proceedings of the Nutrition Society, 62(3), 621–634. https://doi.org/10.1079/PNS2003282
Westerterp, K. R. (2013). Physical activity and physical activity induced energy expenditure in humans: Measurement, determinants, and effects. Frontiers in Physiology, 4, 90. https://doi.org/10.3389/fphys.2013.00090
dérive cardiaque (n. f.) Lien copié dans le presse-papiers
Coyle, E. F., & González-Alonso, J. (2001). Cardiovascular drift during prolonged exercise: New perspectives. Exercise and Sport Sciences Reviews, 29(2), 88–92. https://pubmed.ncbi.nlm.nih.gov/11337829/
Wingo, J. E., Lafrenz, A. J., Ganio, M. S., Edwards, G. L., & Cureton, K. J. (2005). Cardiovascular drift is related to reduced maximal oxygen uptake during heat stress. Medicine & Science in Sports & Exercise, 37(2), 248–255. https://pubmed.ncbi.nlm.nih.gov/15692320/
désentraînement (n. m.) Lien copié dans le presse-papiers
Bosquet, L., Berryman, N., Dupuy, O., Mekary, S., Arvisais, D., Bherer, L., & Mujika, I. (2013). Effect of training cessation on muscular performance: A meta-analysis. Scandinavian Journal of Medicine & Science in Sports, 23(3), e140–e149. https://doi.org/10.1111/sms.12047
Mujika, I., & Padilla, S. (2000). Detraining: Loss of training-induced physiological and performance adaptations. Part I. Sports Medicine, 30(2), 79–87. https://doi.org/10.2165/00007256-200030020-00002
Mujika, I., & Padilla, S. (2000). Detraining: Loss of training-induced physiological and performance adaptations. Part II: Long term insufficient training stimulus. Sports Medicine, 30(3), 145–154. https://doi.org/10.2165/00007256-200030030-00001
déshydratation (n. f.) Lien copié dans le presse-papiers
Adams, J. D., Sekiguchi, Y., Suh, H. G., Seal, A. D., Sprong, C. A., Kirkland, T. W., & Kavouras, S. A. (2018). Dehydration impairs cycling performance, independently of thirst: A blinded randomized crossover study. Medicine & Science in Sports & Exercise, 50(8), 1697–1704. https://pubmed.ncbi.nlm.nih.gov/29509643/
Kenefick, R. W. (2018). Drinking strategies: Planned drinking versus drinking to thirst. Sports Medicine, 48(S1), S31–S37. https://doi.org/10.1007/s40279-017-0844-6
Sawka, M. N., Cheuvront, S. N., & Kenefick, R. W. (2015). Hypohydration and human performance: Impact of environment and physiological mechanisms. Sports Medicine, 45(S1), S51–S60. https://doi.org/10.1007/s40279-015-0395-7
détente (n. f.) Lien copié dans le presse-papiers
Enoka, R. M. (2025). Neuromechanics of human movement (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/neuromechanics-of-human-movement-6th-edition?srsltid=AfmBOopCF0_zJpMol3sLnzVVFNzhB_JLAIQIz1PzPhwliaCU65ZjMSIp#tab-description
Markovic, G., & Mikulic, P. (2010). Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Medicine, 40(10), 859–895. https://doi.org/10.2165/11318370-000000000-00000
Newton, R. U., & Kraemer, W. J. (1994). Developing explosive muscular power: Implications for a mixed methods training strategy. Strength and Conditioning Journal, 16(5), 20-31. https://journals.lww.com/nsca-scj/citation/1994/10000/developing_explosive_muscular_power__implications.2.aspx
déterminant de la performance (n. m.) Lien copié dans le presse-papiers
Joyner, M. J., & Coyle, E. F. (2008). Endurance exercise performance: The physiology of champions. Journal of Physiology, 586(1), 35–44. https://doi.org/10.1113/jphysiol.2007.143834
McLaren, S. J., Macpherson, T. W., Coutts, A. J., Hurst, C., Spears, I. R., & Weston, M. (2018). The relationships between internal and external measures of training load and intensity in team sports: A meta-analysis. Sports Medicine, 48(3), 641–658. https://doi.org/10.1007/s40279-017-0830-z
Thibault, G. (2009). Entraînement cardio : Sports d’endurance et performance. Vélo Québec. www.velo.qc.ca/magazine/livres-guides-et-cartes/entrainement-cardio/
développement moteur (n. m.) Lien copié dans le presse-papiers
Gallahue, D. L., Ozmun, J. C., & Goodway, J. D. (2019). Understanding motor development: infants, children, adolescents, adults (8e éd.). Jones & Bartlett Learning. https://books.google.ca/books/about/Understanding_Motor_Development_Infants.html?id=h5KwDwAAQBAJ&redir_esc=y
Payne, V. G., & Isaacs, L. D. (2025). Human motor development: A lifespan approach (11e éd.). Routledge. www.routledge.com/Human-Motor-Development-A-Lifespan-Approach/Payne-Isaacs/p/book/9781032697130
Schmidt, R. A., & Lee, T. D. (2020). Motor learning and performance: From principles to application (6ᵉ éd.). Human Kinetics. https://canada.humankinetics.com/products/motor-learning-and-performance-6th-edition-with-web-study-guide-loose-leaf-edition?srsltid=AfmBOorhsaoMXp1f4jASX6bXAWZLKn9IgsHe5gNxWuxJUt4UGL6PCW5B
durabilité (n. f.) Lien copié dans le presse-papiers
Jones, A. M. (2024). The fourth dimension: physiological resilience as an independent determinant of endurance exercise performance. The Journal of physiology, 602(17), 4113-4128. https://doi.org/10.1113/JP284205
Maunder, E., Seiler, S., Mildenhall, M. J., Kilding, A. E., & Plews, D. J. (2021). The importance of ’durability’ in the physiological profiling of endurance athletes. Sports medicine, 51(8), 1619-1628. https://doi.org/10.1007/s40279-021-01459-0
efficacité biomécanique (n. f.) Lien copié dans le presse-papiers
Cavanagh, P. R., & Kram, R. (1985). Mechanical and muscular factors affecting the efficiency of human movement. Medicine & Science in Sports & Exercise, 17(3), 326–331. https://europepmc.org/article/med/3894869
Di Prampero, P. E. (2005). Energetics of muscular exercise. Reviews of Physiology, Biochemistry and Pharmacology, 89, 143–222. https://doi.org/10.1007/BFb0035266
Ettema, G., & Lorås, H. W. (2009). Efficiency in cycling: A review. European Journal of Applied Physiology, 106(1), 1–14. https://doi.org/10.1007/s00421-009-1008-7
Barnes, K. R., & Kilding, A. E. (2015). Running economy: Measurement, norms, and determining factors. Sports Medicine – Open, 1(1), 8. https://doi.org/10.1186/s40798-015-0007-y
effort perçu (n. m.) Lien copié dans le presse-papiers
Borg, E., & Kaijser, L. (2006). A comparison between three rating scales for perceived exertion and two different work tests. Scandinavian Journal of Medicine & Science in Sports, 16(1), 57–69. https://doi.org/10.1111/j.1600-0838.2005.00448.x
Goldstein, E. B. (Ed.). (2010). Encyclopedia of perception. Sage. https://sk.sagepub.com/ency/edvol/perception/toc
Pageaux, B. (2016). Perception of effort in exercise science: Definition, measurement and perspectives. European Journal of Sport Science, 16(8), 885–894. https://doi.org/10.1080/17461391.2016.1188992
effort physique (n. m.) Lien copié dans le presse-papiers
Borg, G. A. V. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377–381. https://europepmc.org/article/med/7154893
Goldstein, E. B. (Ed.). (2010). Encyclopedia of perception. Sage. https://sk.sagepub.com/ency/edvol/perception/toc
électrolyte (n. m.) Lien copié dans le presse-papiers
Sawka, M. N., & Montain, S. J. (2000). Fluid and electrolyte supplementation for exercise heat stress. American Journal of Clinical Nutrition, 72(2 Suppl.), 564S–572S. https://doi.org/10.1093/ajcn/72.2.564S
Stand, A. P. (2009). Exercise and fluid replacement. Medicine and Science in Sports and Exercise, 39(2), 377-390. https://doi.org/10.1249/mss.0b013e31802ca597
Thomas, D. T., Erdman, K. A., & Burke, L. M. (2016). Nutrition and athletic performance. Medicine and Science in Sports and Exercise, 48(3), 543-568. https://doi.org/10.1249/mss.0000000000000852
endurance aérobie (n. f.) Lien copié dans le presse-papiers
Bassett, D. R., Jr, & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and Science in Sports and Exercise, 32(1), 70–84. https://doi.org/10.1097/00005768-200001000-00012
Joyner, M. J., & Coyle, E. F. (2008). Endurance exercise performance: The physiology of champions. Journal of Physiology, 586(1), 35–44. https://doi.org/10.1113/jphysiol.2007.143834
Péronnet, F., & Thibault, G. (1989). Mathematical analysis of running performance and world running records. Journal of Applied Physiology, 67(1), 453–465. https://doi.org/10.1152/jappl.1989.67.1.453
Thibault, G. (2009). Entraînement cardio : Sports d’endurance et performance. Vélo Québec. www.velo.qc.ca/magazine/livres-guides-et-cartes/entrainement-cardio/
endurance musculaire (n. f.) Lien copié dans le presse-papiers
American College of Sports Medicine. (2009). Progression models in resistance training for healthy adults. Medicine & Science in Sports & Exercise, 41(3), 687–708. https://doi.org/10.1249/MSS.0b013e3181915670
Steele, J., Fisher, J., Giessing, J., & Gentil, P. (2017). Clarity in reporting terminology and definitions of set endpoints in resistance training. Muscle & Nerve, 56(3), 368–374. https://doi.org/10.1002/mus.25557
entraînabilité (n. f.) Lien copié dans le presse-papiers
Bouchard, C., Sarzynski, M. A., Rice, T. K., Kraus, W. E., Church, T. S., Sung, Y. J., …
Rankinen, T. (2011). Genomic predictors of the maximal O₂ uptake response to standardized exercise training programs. Journal of Applied Physiology, 110(5), 1160–1170. https://doi.org/10.1152/japplphysiol.00973.2010
Mann, T. N., Lamberts, R. P., & Lambert, M. I. (2014). High responders and low responders: Factors associated with individual variation in response to standardized training. Sports Medicine, 44(8), 1113–1124. https://doi.org/10.1007/s40279-014-0197-3
entraînement avec restriction du flux sanguin (n. m.) Lien copié dans le presse-papiers
Variantes régionales : France : entraînement en occlusion vasculaire; Québec : entraînement avec restriction du flux sanguin
Fortin, J.-F., & Billaut, F. (2019). Blood-flow restricted warm-up alters muscle hemodynamics and oxygenation during repeated sprints in American football players. Sports, 7(5), 121. www.mdpi.com/2075-4663/7/5/121
Hughes, L., Paton, B., Rosenblatt, B., Gissane, C., & Patterson, S. D. (2017). Blood flow restriction training in clinical musculoskeletal rehabilitation: A systematic review and meta-analysis. British Journal of Sports Medicine, 51(13), 1003–1011. https://doi.org/10.1136/bjsports-2016-097071
Patterson, S. D., Hughes, L., Warmington, S., Burr, J., Scott, B. R., Owens, J., … Laurentino, G. (2019). Blood flow restriction exercise: Considerations of methodology, application, and safety. Frontiers in Physiology, 10, 533. https://doi.org/10.3389/fphys.2019.00533
Scott, B. R., Loenneke, J. P., Slattery, K. M., & Dascombe, B. J. (2015). Exercise with blood flow restriction: An updated evidence-based approach for enhanced muscular development. Sports Medicine, 45(3), 313–325. https://doi.org/10.1007/s40279-014-0288-1
entraînement combiné (n. m.) Lien copié dans le presse-papiers
Fyfe, J. J., Bishop, D. J., & Stepto, N. K. (2014). Interference between concurrent resistance and endurance exercise: Molecular bases and the role of individual training variables. Sports Medicine, 44(6), 743–762. https://doi.org/10.1007/s40279-014-0162-1
Wilson, J. M., Marin, P. J., Rhea, M. R., Wilson, S. M., Loenneke, J. P., & Anderson, J. C. (2012). Concurrent training: A meta-analysis examining interference of aerobic and resistance exercises. Journal of Strength and Conditioning Research, 26(8), 2293–2307. https://doi.org/10.1519/JSC.0b013e31823a3e2d
entraînement concurrent (n. m.) Lien copié dans le presse-papiers
Coffey, V. G., & Hawley, J. A. (2017). Concurrent exercise training: Do opposites distract? Journal of Physiology, 595(9), 2883–2896. https://doi.org/10.1113/JP272270
Docherty, D., & Sporer, B. (2000). A proposed model for examining the interference phenomenon between concurrent aerobic and strength training. Sports Medicine, 30(6), 385–394. https://doi.org/10.2165/00007256-200030060-00001
Fyfe, J. J., Bishop, D. J., & Stepto, N. K. (2014). Interference between concurrent resistance and endurance exercise: Molecular bases and the role of individual training variables. Sports Medicine, 44(6), 743–762. https://doi.org/10.1007/s40279-014-0162-1
García-Pallarés, J., & Izquierdo, M. (2011). Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing. Sports Medicine, 41(4), 329–343. https://doi.org/10.2165/11539690-000000000-00000
Leveritt, M., Abernethy, P. J., Barry, B. K., & Logan, P. A. (1999). Concurrent strength and endurance training: A review. Sports Medicine, 28(6), 413–427. https://doi.org/10.2165/00007256-199928060-00004
entraînement continu (n. m.) Lien copié dans le presse-papiers
Midgley, A. W., Mc Naughton, L. R., & Jones, A. M. (2007). Training to enhance the physiological determinants of long-distance running performance. Sports Medicine, 37(10), 857–880. https://doi.org/10.2165/00007256-200737100-00003
Seiler, S., & Tønnessen, E. (2009). Intervals, thresholds, and long slow distance: The role of intensity and duration in endurance training. Sportscience, 13, 32–53. https://sportsci.org/2009/ss.htm
Thibault, G. (2009). Entraînement cardio : Sports d’endurance et performance. Vélo Québec. www.velo.qc.ca/magazine/livres-guides-et-cartes/entrainement-cardio/
entraînement en altitude (n. m.) Lien copié dans le presse-papiers
Girard, O., Amann, M., Aughey, R., Billaut, F., Bishop, D. J., Bourdon, P., … Millet, G. P. (2013). Position statement—Altitude training for improving team-sport players’ performance: Current knowledge and unresolved issues. British Journal of Sports Medicine, 47(1 Suppl.), i8–i16. https://doi.org/10.1136/bjsports-2013-093109
Millet, G. P., Roels, B., Schmitt, L., Woorons, J., & Richalet, J. P. (2010). Combining hypoxic methods for peak performance. Sports Medicine, 40(1), 1–25. https://doi.org/10.2165/11317920-000000000-00000
Péronnet, F., Thibault, G., & Cousineau, D. L. (1991). A theoretical analysis of the effect of altitude on running performance. Journal of Applied Physiology (Bethesda, Md.: 1985), 70(1), 399–404. https://journals.physiology.org/doi/abs/10.1152/jappl.1991.70.1.399
entraînement en ambiance chaude (n. m.) Lien copié dans le presse-papiers
Périard, J. D., Racinais, S., & Sawka, M. N. (2015). Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scandinavian Journal of Medicine & Science in Sports, 25(Suppl. 1), 20–38. https://doi.org/10.1111/sms.12408
Racinais, S., Alonso, J. M., Coutts, A. J., Flouris, A. D., Girard, O., González‐Alonso, J., … & Périard, J. D. (2015). Consensus recommendations on training and competing in the heat. Scandinavian Journal of Medicine & Science in Sports, 25, 6-19. https://doi.org/10.1111/sms.12467
Racinais, S., & Périard, J. D. (2020). Benefits of heat re-acclimation in the lead-up to the Tokyo Olympics. British Journal of Sports Medicine, 54(16), 945-946. https://doi.org/10.1136/bjsports-2020-102299
entraînement en circuit (n. m.) Lien copié dans le presse-papiers
Alcaraz, P. E., Sánchez-Lorente, J., & Blazevich, A. J. (2008). Physical performance and cardiovascular responses to an acute bout of heavy resistance circuit training versus traditional strength training. Journal of Strength and Conditioning Research, 22(3), 667–671. https://doi.org/10.1519/JSC.0b013e31816a588f
Gettman, L. R., & Pollock, M. L. (1981). Circuit weight training: A critical review of its physiological benefits. The Physician and Sportsmedicine, 9(1), 44–60. https://pubmed.ncbi.nlm.nih.gov/27462744/
Paoli, A., Pacelli, F., Bargossi, A. M., Marcolin, G., Guzzinati, S., Neri, M., … & Palma, A. (2010). Effects of three distinct protocols of fitness training on body composition, strength and blood lactate. J Sports Med Phys Fitness, 50(1), 43-51. https://pubmed.ncbi.nlm.nih.gov/20308971/
entraînement excessif (n. m.) Lien copié dans le presse-papiers
Halson, S. L., & Jeukendrup, A. E. (2004). Does overtraining exist? An analysis of overreaching and overtraining research. Sports Medicine, 34(14), 967–981. https://doi.org/10.2165/00007256-200434140-00003
Kreher, J. B., & Schwartz, J. B. (2012). Overtraining syndrome: A practical guide. Sports Health, 4(2), 128–138. https://doi.org/10.1177/1941738111434406
Meeusen, R., et al. (2013). Prevention, diagnosis and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. European Journal of Sport Science, 13(1), 1–24. https://doi.org/10.1080/17461391.2012.730061
entraînement fonctionnel (n. m.) Lien copié dans le presse-papiers
Behm, D. G., Muehlbauer, T., Kibele, A., & Granacher, U. (2022). Effects of traditional and functional strength training on physical fitness and athletic performance. Sports Medicine, 52(3), 569–588. https://pmc.ncbi.nlm.nih.gov/articles/PMC11697885/
Boyle, M. (2016). New functional training for sports (2ᵉ éd.). Human Kinetics. https://books.google.ca/books?hl=en&lr=&id=U_IuDAAAQBAJ&oi=fnd&pg=PR1&dq=functional+training+for+sports&ots=Rz2nu56zZg&sig=0RXw56_d63B4aCVXBC1nLbkYgRg#v=onepage&q=functional%20training%20for%20sports&f=false
Falk Neto, J. H., & Kennedy, M. D. (2019). The multimodal nature of high-intensity functional training: Potential applications to improve sport performance. Sports, 7(2):33. https://doi.org/10.3390/sports7020033
entraînement mental (n. m.) Lien copié dans le presse-papiers
Birrer, D., Röthlin, P., & Morgan, G. (2012). Mindfulness to enhance athletic performance: Theoretical considerations and possible impact mechanisms. Mindfulness, 3(3), 235–246. https://doi.org/10.1007/s12671-012-0109-2
Guillot, A., & Collet, C. (2010). The neurophysiological foundations of mental and motor imagery. Oxford University Press. https://global.oup.com/academic/product/the-neurophysiological-foundations-of-mental-and-motor-imagery-9780199546251?cc=ca&lang=en&#
Vealey, R. S. (2007). Mental skills training in sport. In G. Tenenbaum & R. C. Eklund (Eds.), Handbook of sport psychology (3e éd.). Wiley. https://doi.org/10.1002/9781118270011.ch13
Weinberg, R. S., & Gould, D. (2023). Foundations of sport and exercise psychology (8e éd.). Human Kinetics. https://books.google.ca/books?hl=en&lr=&id=GHGLEAAAQBAJ&oi=fnd&pg=PR3&dq=Weinberg,+R.+S.,+%26+Gould,+D.+(2018).+Foundations+of+sport+and+exercise+psychology+(7th+ed.).+Human+Kinetics.&ots=Ju-BXeMt5W&sig=z1DcvGcLdN8DbgjwgLQBFTa8oQA#v=onepage&q&f=false
entraînement mixte (n. m.) Lien copié dans le presse-papiers
Docherty, D., & Sporer, B. (2000). A proposed model for examining the interference phenomenon between concurrent aerobic and strength training. Sports Medicine, 30(6), 385–394. https://doi.org/10.2165/00007256-200030060-00001
Fyfe, J. J., Bishop, D. J., & Stepto, N. K. (2014). Interference between concurrent resistance and endurance exercise: Molecular bases and the role of individual training variables. Sports Medicine, 44(6), 743–762. https://doi.org/10.1007/s40279-014-0162-1
García-Pallarés, J., & Izquierdo, M. (2011). Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing. Sports Medicine, 41(4), 329–343. https://doi.org/10.2165/11539690-000000000-00000
Leveritt, M., Abernethy, P. J., Barry, B. K., & Logan, P. A. (1999). Concurrent strength and endurance training: A review. Sports Medicine, 28(6), 413–427. https://doi.org/10.2165/00007256-199928060-00004
Tanaka, H. (1994). Effects of cross-training: Transfer of training effects on V̇O₂max between cycling, running and swimming. Sports Medicine, 18(5), 330–339. https://doi.org/10.2165/00007256-199418050-00005
Weinberg, R. S., & Gould, D. (2023). Foundations of sport and exercise psychology (8ᵉ éd.). Human Kinetics. https://books.google.ca/books?hl=en&lr=&id=GHGLEAAAQBAJ&oi=fnd&pg=PR3&dq=Weinberg,+R.+S.,+%26+Gould,+D.+(2018).+Foundations+of+sport+and+exercise+psychology+(7th+ed.).+Human+Kinetics.&ots=Ju-BXeMt5W&sig=z1DcvGcLdN8DbgjwgLQBFTa8oQA#v=onepage&q&f=false
entraînement par intervalles (n. m.) Lien copié dans le presse-papiers
Buchheit, M., & Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle: Part I. Sports Medicine, 43(5), 313–338. https://doi.org/10.1007/s40279-013-0029-x
Gibala, M. J., & McGee, S. L. (2008). Metabolic adaptations to short-term high-intensity interval training: A little pain for a lot of gain? Exercise and Sport Sciences Reviews, 36(2), 58–63. https://doi.org/10.1097/JES.0b013e318168ec1f
Laursen, P. B., & Jenkins, D. G. (2002). The scientific basis for high-intensity interval training: Optimising training programmes and maximising performance in highly trained endurance athletes. Sports Medicine, 32(1), 53–73. https://doi.org/10.2165/00007256-200232010-00003
Paquette, M., Le Blanc, O., Lucas, S. J. E., Thibault, G., Bailey, D. M., & Brassard, P. (2017). Effects of submaximal and supramaximal interval training on determinants of endurance performance in endurance athletes. Scandinavian Journal of Medicine & Science in Sports, 27(3), 318–326. https://doi.org/10.1111/sms.12660
Thibault, G. (2003). A graphical model for interval training. IAAF New Studies in Athletics. 18:3; 49-55. www.semanticscholar.org/paper/A-graphical-model-for-interval-training-Thibault/bbd3f4b27006ed7d68e6556bc073e156eae4b739
Thibault, G. (2009). Entraînement cardio : Sports d’endurance et performance. Vélo Québec. www.velo.qc.ca/magazine/livres-guides-et-cartes/entrainement-cardio/
Weston, M., Taylor, K. L., Batterham, A. M., & Hopkins, W. G. (2014). Effects of low-volume high-intensity interval training (HIT) on fitness in adults: A meta-analysis of controlled and non-controlled trials. Sports Medicine, 44(7), 1005–1017. https://doi.org/10.1007/s40279-014-0180-z
entraînement physique (n. m.) Lien copié dans le presse-papiers
American College of Sports Medicine. (2022). ACSM’s guidelines for exercise testing and prescription (11e éd.). Wolters Kluwer. www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
Garber, Carol Ewing Ph.D., FACSM, (Chair); Blissmer, Bryan Ph.D.; Deschenes, Michael R. PhD, FACSM; Franklin, Barry A. Ph.D., FACSM; Lamonte, Michael J. Ph.D., FACSM; Lee, I-Min M.D., Sc.D., FACSM; Nieman, David C. Ph.D., FACSM; Swain, David P. Ph.D., FACSM. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Medicine & Science in Sports & Exercise 43(7):p 1334-1359, July 2011. https://doi.org/10.1249/MSS.0b013e318213fefb
entraînement polarisé (n. m.) Lien copié dans le presse-papiers
Neal, C. M., et al. (2013). Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. Journal of Applied Physiology, 114(4), 461–471. https://doi.org/10.1152/japplphysiol.00652.2012
Seiler, K. S., & Kjerland, G. Ø. (2006). Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scandinavian Journal of Medicine & Science in Sports, 16(1), 49–56. https://onlinelibrary.wiley.com/doi/10.1111/j.1600-0838.2004.00418.x
entraînement pyramidal (n. m.) Lien copié dans le presse-papiers
Esteve-Lanao, J., San Juan, A. F., Earnest, C. P., Foster, C., & Lucia, A. (2005). How do endurance runners actually train? Relationship with competition performance. Medicine & Science in Sports & Exercise, 37(3), 496–504. https://doi.org/10.1249/01.MSS.0000155393.78744.86
Muñoz, I., Seiler, S., Bautista, J., España, J., Larumbe, E., & Esteve-Lanao, J. (2014). Does polarized training improve performance in recreational runners? International Journal of Sports Physiology and Performance, 9(2), 265–272. https://doi.org/10.1123/ijspp.2012-0350
Neal, C. M., et al. (2013). Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. Journal of Applied Physiology, 114(4), 461–471. https://doi.org/10.1152/japplphysiol.00652.2012
Stöggl, T., & Sperlich, B. (2015). The training intensity distribution among well-trained and elite endurance athletes. Frontiers in Physiology, 6, 295. https://doi.org/10.3389/fphys.2015.00295
entraîneur (n. m.), entraîneuse (n. f.) Lien copié dans le presse-papiers
Côté, J., & Gilbert, W. (2009). An integrative definition of coaching effectiveness and expertise. International Journal of Sports Science & Coaching, 4(3), 307–323.
International Council for Coaching Excellence (ICCE). (2013). International sport coaching framework. Human Kinetics.
Lyle, J., & Cushion, C. (2017). Sports coaching concepts: A framework for coaching practice’ behaviour. Routledge.
épreuve d’effort (n. f.) Lien copié dans le presse-papiers
American College of Sports Medicine. (2021). ACSM’s guidelines for exercise testing and prescription (11e éd.). Wolters Kluwer. www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
Fletcher, G. F., Ades, P. A., Kligfield, P., Arena, R., Balady, G. J., Bittner, V. A., … Williams, M. A. (2013). Exercise standards for testing and training: A scientific statement from the American Heart Association. Circulation, 128(8), 873–934. https://doi.org/10.1161/CIR.0b013e31829b5b44
Myers, J., Arena, R., Franklin, B., Pina, I., Kraus, W. E., McInnis, K., … Kaminsky, L. A. (2009). Recommendations for clinical exercise laboratories: A scientific statement from the American Heart Association. Circulation, 119(24), 3144–3161. https://doi.org/10.1161/CIRCULATIONAHA.109.192520
épuisement (n. m.) Lien copié dans le presse-papiers
Abbiss, C. R., & Laursen, P. B. (2005). Models to explain fatigue during prolonged endurance cycling. Sports Medicine, 35(10), 865–898. https://doi.org/10.2165/00007256-200535100-00004
Enoka, R. M., & Duchateau, J. (2016). Translating fatigue to human performance. Medicine & Science in Sports & Exercise, 48(11), 2228–2238. https://doi.org/10.1249/MSS.0000000000000929
Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews, 81(4), 1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725
équipe de soutien intégré (n. f.) Lien copié dans le presse-papiers
Variantes régionales : usage surtout institutionnalisé au Canada; rare en France, Belgique et Suisse.
Institut national du sport du Québec (2021). ONPEUT être agiles (sic) www.insquebec.org/nouvelles/onpeut-etre-agiles/
Marier, A., Couture-Légaré, J., & Pilote, É. (2019). Développement du talent sportif : Document de référence. Ministère de l’Éducation et de l’Enseignement supérieur. www.education.gouv.qc.ca/fileadmin/site_web/documents/publications/Developpement-du-talent_sportif.pdf
Reid, C., Stewart, E., & Thorne, G. (2004). Multidisciplinary sport science teams in elite sport: Comprehensive servicing or conflict and confusion? The Sport Psychologist, 18(2), 204–217. https://journals.humankinetics.com/view/journals/tsp/18/2/article-p204.xml
équivalent métabolique (MET) (n. m.) Lien copié dans le presse-papiers
Ainsworth, B. E., Haskell, W. L., Herrmann, S. D., Meckes, N., Bassett, D. R., Tudor-Locke, C., … Leon, A. S. (2011). 2011 Compendium of physical activities: A second update of codes and MET values. Medicine & Science in Sports & Exercise, 43(8), 1575–1581. https://doi.org/10.1249/MSS.0b013e31821ece12
Jetté, M., Sidney, K., & Blümchen, G. (1990). Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clinical Cardiology, 13(8), 555–565. https://doi.org/10.1002/clc.4960130809
Péronnet, F., & Massicotte, D. (1991). Table of nonprotein respiratory quotient: an update. Journal Canadien Des Sciences Du Sport [Canadian Journal of Sport Sciences], 16(1), 23–29. https://pubmed.ncbi.nlm.nih.gov/1645211/
ergogène (n. m.) Lien copié dans le presse-papiers
Maughan, R. J., Burke, L. M., Dvorak, J., Larson-Meyer, D. E., Peeling, P., Phillips, S. M., … Engebretsen, L. (2018). IOC consensus statement: Dietary supplements and the high-performance athlete. British Journal of Sports Medicine, 52(7), 439–455. https://doi.org/10.1136/bjsports-2018-099027
Peeling, P., Castell, L. M., Derave, W., De Hon, O., Burke, L. M., & Close, G. L. (2019). Sports foods and dietary supplements for optimal function and performance enhancement in track-and-field athletes. International Journal of Sport Nutrition and Exercise Metabolism, 29(2), 198–209. https://doi.org/10.1123/ijsnem.2018-0271
ergomètre (n. m.) Lien copié dans le presse-papiers
American College of Sports Medicine. (2021). ACSM’s guidelines for exercise testing and prescription (11e éd.). Wolters Kluwer. www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
Arts, F. J. P., & Kuipers, H. (1994). The relation between power output, oxygen uptake and heart rate in male athletes. International Journal of Sports Medicine, 15(5), 228–231. https://doi.org/10.1055/s-2007-1021055
McArdle, W. D., Katch, F. I., & Katch, V. L. (2023). Exercise physiology: nutrition, energy, and human performance (9e éd.). Wolters Kluwer. https://shop.lww.com/Exercise-Physiology/p/9781975217297
estime de soi (n. f.) Lien copié dans le presse-papiers
Fox, K. R. (2000). Self-esteem, self-perceptions and exercise. International Journal of Sport Psychology, 31(2), 228–240. www.cabidigitallibrary.org/doi/full/10.5555/20013121264
Harter, S. (2012). The construction of the self: Developmental and sociocultural foundations (2e éd.). Google books. https://books.google.ca/books/about/The_Construction_of_the_Self_Second_Edit.html?id=OZ2tCAAAQBAJ&redir_esc=y
Rosenberg, M. (1965). Society and the adolescent self-Image. Princeton University Press. https://press.princeton.edu/books/hardcover/9780691649443/society-and-the-adolescent-self-image?srsltid=AfmBOoodOTDVnEJdQHpxPmgme27x4SJRuV9enH-RVD1JyBz2TLfyfEZ7
Slutzky, C. B., & Simpkins, S. D. (2009). The link between children’s sport participation and self-esteem: Exploring the mediating role of sport self-concept. Psychology of Sport and Exercise, 10(3), 381–389. https://doi.org/10.1016/j.psychsport.2008.09.006
Sonstroem, R. J., & Morgan, W. P. (1989). Exercise and self-esteem: Rationale and model. Medicine & Science in Sports & Exercise, 21(3), 329–337. https://europepmc.org/article/med/2659918
état de flow (n. m.) Lien copié dans le presse-papiers
Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. Harper & Row. www.tandfonline.com/doi/abs/10.1080/00222216.1992.11969876
Jackson, S. A., & Csikszentmihalyi, M. (1999). Flow in sports: The keys to optimal experiences and performances. Human Kinetics. https://canada.humankinetics.com/products/flow-in-sports srsltid=AfmBOooR5IX68KApJzs4_eBZY86P4DWCtLTSshPixuWoWVOuilBoTEfp
Swann, C., Keegan, R. J., Piggott, D., & Crust, L. (2012). A systematic review of the experience, occurrence, and controllability of flow states in elite sport. Psychology of Sport and Exercise, 13(6), 807–819. https://doi.org/10.1016/j.psychsport.2012.05.006
état stable lactique maximal (ESLM) (n. m.) Lien copié dans le presse-papiers
Beneke, R. (2003). Methodological aspects of maximal lactate steady state—implications for performance testing. European Journal of Applied Physiology, 89(1), 95–99. https://link.springer.com/article/10.1007/s00421-002-0783-1
Faude, O., Kindermann, W., & Meyer, T. (2009). Lactate threshold concepts: How valid are they? Sports Medicine, 39(6), 469–490. https://doi.org/10.2165/00007256-200939060-00003
Heck, H., & Wackerhage, H. (2024). The origin of the maximal lactate steady state (MLSS). BMC Sports Science, Medicine and Rehabilitation, 16(1), 36. https://bmcsportsscimedrehabil.biomedcentral.com/articles/10.1186/s13102-024-00827-3
étirement statique (n. m.) Lien copié dans le presse-papiers
American College of Sports Medicine. (2021). ACSM’s guidelines for exercise testing and prescription (11e éd.). Wolters Kluwer. www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
Behm, D. G., & Chaouachi, A. (2011). A review of the acute effects of static and dynamic stretching on performance. European Journal of Applied Physiology, 111(11), 2633–2651. https://doi.org/10.1007/s00421-011-1879-2
Kay, A. D., & Blazevich, A. J. (2012). Effect of acute static stretch on maximal muscle performance: A systematic review. Medicine & Science in Sports & Exercise, 44(1), 154–164. https://pure.northampton.ac.uk/en/publications/effect-of-acute-static-stretch-on-maximal-muscle-performance-a-sy/
Opplert, J., & Babault, N. (2018). Acute effects of dynamic stretching on muscle flexibility and performance: An analysis of the current literature. Sports Medicine, 48(2), 299–325. https://doi.org/10.1007/s40279-017-0797-9
exercice intermittent (n. m.) Lien copié dans le presse-papiers
Buchheit, M., & Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle. Part I: Cardiopulmonary emphasis. Sports Medicine, 43(5), 313–338. https://doi.org/10.1007/s40279-013-0029-x
Thibault, G. (2009). Entraînement cardio : Sports d’endurance et performance. Vélo Québec. www.velo.qc.ca/magazine/livres-guides-et-cartes/entrainement-cardio/
exercice isocinétique (n. m.) Lien copié dans le presse-papiers
Ayala, F., De Ste Croix, M., Sainz de Baranda, P., & Santonja, F. (2014). Absolute reliability of isokinetic knee flexion and extension measurements adopting a prone position. Clinical Physiology and Functional Imaging, 34(3), 224–232. https://doi.org/10.1111/j.1475-097X.2012.01162.x
Dvir, Z. (Ed.). (2025). Isokinetics: muscle testing, interpretation and clinical applications. Routledge. https://books.google.ca/books?hl=en&lr=&id=iLNcEQAAQBAJ&oi=fnd&pg=PP1&ots=xKDRK-XJto&sig=g2KSqumP0A6hxDzrKEpsrppiJds#v=onepage&q&f=false
exercice isotonique (n. m.) Lien copié dans le presse-papiers
Enoka, R. M. (2025). Neuromechanics of human movement (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/neuromechanics-of-human-movement-6th-edition?srsltid=AfmBOopCF0_zJpMol3sLnzVVFNzhB_JLAIQIz1PzPhwliaCU65ZjMSIp#tab-description
Garber, C. E., et al. (2011). American College of Sports Medicine position stand – Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine & Science in Sports & Exercise, 43(7), 1334–1359. https://doi.org/10.1249/MSS.0b013e318213fefb
exercice physique (n. m.) Lien copié dans le presse-papiers
Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Reports, 100(2), 126–131. https://pmc.ncbi.nlm.nih.gov/articles/PMC1424733/
Piercy, K. L., Troiano, R. P., Ballard, R. M., Carlson, S. A., Fulton, J. E., Galuska, D. A., … Olson, R. D. (2018). The physical activity guidelines for Americans. JAMA, 320(19), 2020–2028. https://doi.org/10.1001/jama.2018.14854
fatigue (n. f.) Lien copié dans le presse-papiers
Abbiss, C. R., & Laursen, P. B. (2005). Models to explain fatigue during prolonged endurance cycling. Sports Medicine, 35(10), 865–898. https://doi.org/10.2165/00007256-200535100-00004
Enoka, R. M., & Duchateau, J. (2016). Translating fatigue to human performance. Medicine & Science in Sports & Exercise, 48(11), 2228–2238. https://doi.org/10.1249/MSS.0000000000000929
Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews, 81(4), 1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725
Millet, G. Y., & Lepers, R. (2004). Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Medicine, 34(2), 105–116. https://doi.org/10.2165/00007256-200434020-00004
fatigue centrale (n. f.) Lien copié dans le presse-papiers
Enoka, R. M., & Duchateau, J. (2016). Translating fatigue to human performance. Medicine & Science in Sports & Exercise, 48(11), 2228–2238. https://doi.org/10.1249/MSS.0000000000000929
Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews, 81(4), 1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725
Millet, G. Y., & Lepers, R. (2004). Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Medicine, 34(2), 105–116 .https://doi.org/10.2165/00007256-200434020-00004
Taylor, J. L., Amann, M., Duchateau, J., Meeusen, R., & Rice, C. L. (2016). Neural contributions to muscle fatigue: From the brain to the muscle and back again. Medicine & Science in Sports & Exercise, 48(11), 2294–2306. https://doi.org/10.1249/MSS.0000000000000923
Taylor, J. L., Todd, G., & Gandevia, S. C. (2006). Evidence for a supraspinal contribution to human muscle fatigue. Clinical and Experimental Pharmacology and Physiology, 33(4), 400–405. https://doi.org/10.1111/j.1440-1681.2006.04363.x
fatigue neuromusculaire (n. f.) Lien copié dans le presse-papiers
Allen, D. G., Lamb, G. D., & Westerblad, H. (2008). Skeletal muscle fatigue: Cellular mechanisms. Physiological Reviews, 88(1), 287–332. https://doi.org/10.1152/physrev.00015.2007
Bigland-Ritchie, B., & Woods, J. J. (1984). Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle & Nerve, 7(9), 691–699. https://doi.org/10.1002/mus.880070902
Enoka, R. M., & Duchateau, J. (2008). Muscle fatigue: What, why and how it influences muscle function. Journal of Physiology, 586(1), 11–23. https://doi.org/10.1113/jphysiol.2007.139477
Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews, 81(4), 1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725
Millet, G. Y., & Lepers, R. (2004). Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Medicine, 34(2), 105–116 .https://doi.org/10.2165/00007256-200434020-00004
fatigue périphérique (n. f.) Lien copié dans le presse-papiers
Allen, D. G., Lamb, G. D., & Westerblad, H. (2008). Skeletal muscle fatigue: Cellular mechanisms. Physiological Reviews, 88(1), 287–332. https://doi.org/10.1152/physrev.00015.2007
Enoka, R. M., & Duchateau, J. (2008). Muscle fatigue: What, why and how it influences muscle function. Journal of Physiology, 586(1), 11–23. https://doi.org/10.1113/jphysiol.2007.139477
Fitts, R. H. (2016). The role of acidosis in fatigue: Pro perspective. Medicine & Science in Sports & Exercise, 48(11), 2335–2338. https://doi.org/10.1249/mss.0000000000001043
Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews, 81(4), 1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725
Millet, G. Y., & Lepers, R. (2004). Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Medicine, 34(2), 105–116. https://doi.org/10.2165/00007256-200434020-00004
Place, N., Yamada, T., Bruton, J. D., & Westerblad, H. (2010). Muscle fatigue: From observations in humans to underlying mechanisms studied in intact single muscle fibres. European Journal of Applied Physiology, 110(1), 1–15. https://doi.org/10.1007/s00421-010-1480-0
force explosive (n. f.) Lien copié dans le presse-papiers
Aagaard, P. (2003). Training-induced changes in neural function. Exercise and Sport Sciences Reviews, 31(2), 61–67. https://doi.org/10.1097/00003677-200304000-00002
Cormie, P., McGuigan, M. R., & Newton, R. U. (2011). Developing maximal neuromuscular power: Part 1 – Biological basis of maximal power production. Sports Medicine, 41(1), 17–38. https://doi.org/10.2165/11537690-000000000-00000
Komi, P. V. (Ed.). (2008). Strength and power in sport (2e éd.). Wiley. www.wiley.com/en-us/Strength+and+Power+in+Sport%2C+2nd+Edition-p-9781405140591
Maffiuletti, N. A., Aagaard, P., Blazevich, A. J., Folland, J., Tillin, N., & Duchateau, J. (2016). Rate of force development: Physiological and methodological considerations. European Journal of Applied Physiology, 116(6), 1091–1116. https://doi.org/10.1007/s00421-016-3346-6
Tillin, N. A., & Folland, J. P. (2014). Maximal and explosive strength training elicit distinct neuromuscular adaptations: Specificity of training adaptation. European Journal of Applied Physiology, 114(2), 365–374. https://doi.org/10.1007/s00421-013-2781-x
Wilson, J. M., & Flanagan, E. P. (2008). The role of elastic energy in activities with high force and power requirements: a brief review. The Journal of Strength & Conditioning Research, 22(5), 1705-1715. https://doi.org/10.1519/jsc.0b013e31817ae4a7
force maximale (n. f.) Lien copié dans le presse-papiers
American College of Sports Medicine. (2021). ACSM’s guidelines for exercise testing and prescription (11e éd.). Wolters Kluwer. www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
Enoka, R. M. (2025). Neuromechanics of human movement (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/neuromechanics-of-human-movement-6th-edition?srsltid=AfmBOopCF0_zJpMol3sLnzVVFNzhB_JLAIQIz1PzPhwliaCU65ZjMSIp#tab-description
Folland, J. P., & Williams, A. G. (2007). The adaptations to strength training: Morphological and neurological contributions to increased strength. Sports Medicine, 37(2), 145–168. https://doi.org/10.2165/00007256-200737020-00004
Komi, P. V. (Ed.). (2008). Strength and power in sport (2e éd.). Wiley. www.wiley.com/en-us/Strength+and+Power+in+Sport%2C+2nd+Edition-p-9781405140591
McGuigan, M. R. (2017). Developing power. Human Kinetics. https://us.humankinetics.com/products/developing-power-2nd-edition?srsltid=AfmBOoo_GCnhGkzHVIsTkASTqzTGz74uB1rvufqLPCxh-GBBUQ5DQaXo
Suchomel, T. J., Nimphius, S., & Stone, M. H. (2016). The importance of muscular strength in athletic performance. Sports Medicine, 46(10), 1419–1449. https://doi.org/10.1007/s40279-016-0486-0
Zatsiorsky, V. M., & Kraemer, W. J. (2021). Science and practice of strength training (3e éd.). Human Kinetics. https://canada.humankinetics.com/products/science-and-practice-of-strength-training-3rd-edition?srsltid=AfmBOor6Czl0hJkN4jLKReyADU4ZQKFOVMcqHtOs-v8SR_2mmGbJJt9B.
force mentale (n. f.) Lien copié dans le presse-papiers
Bédard Thom, C., Guay, F., & Trottier, C. (2020). Mental toughness in sport: The Goal-Expectancy-Self-Control (GES) model. Journal of Applied Sport Psychology, 33(6), 627–643. www.tandfonline.com/doi/full/10.1080/10413200.2020.1808736
Bédard-Thom, C., Guay, F., & Trottier, C. (2022). Mental toughness in sport: testing the goal-expectancy-self-control (GES) model among runners and cyclists using cross-sectional and experimental designs. International Journal of Sport and Exercise Psychology, 1–24. www.tandfonline.com/doi/full/10.1080/1612197X.2022.2161102
Gucciardi, D. F., Hanton, S., Gordon, S., Mallett, C. J., & Temby, P. (2015). The concept of mental toughness: Tests of dimensionality, nomological network, and traitness. Journal of Personality, 83(1), 26–44. https://doi.org/10.1111/jopy.12079
Jones, G., Hanton, S., & Connaughton, D. (2007). A framework of mental toughness in the world’s best performers. The Sport Psychologist, 21(2), 243–264. https://doi.org/10.1123/tsp.21.2.243
force musculaire (n. f.) Lien copié dans le presse-papiers
Folland, J. P., & Williams, A. G. (2007). The adaptations to strength training: Morphological and neurological contributions to increased strength. Sports Medicine, 37(2), 145–168. https://doi.org/10.2165/00007256-200737020-00004
Komi, P. V. (Ed.). (2008). Strength and power in sport (2e éd.). Wiley. www.wiley.com/en-us/Strength+and+Power+in+Sport%2C+2nd+Edition-p-9781405140591
McGuigan, M. R. (2017). Developing power. Human Kinetics. https://us.humankinetics.com/products/developing-power-2nd-edition?srsltid=AfmBOoo_GCnhGkzHVIsTkASTqzTGz74uB1rvufqLPCxh-GBBUQ5DQaXo
Sale, D. G. (2008). Neural adaptation to strength training. In E. Komi (éd.), Strength and Power in Sport (2ᵉ éd.). Wiley. www.wiley.com/en-us/Strength+and+Power+in+Sport%2C+2nd+Edition-p-9781405140591
Suchomel, T. J., Nimphius, S., & Stone, M. H. (2016). The importance of muscular strength in athletic performance. Sports Medicine, 46(10), 1419–1449. https://doi.org/10.1007/s40279-016-0486-0
Zatsiorsky, V. M., & Kraemer, W. J. (2021). Science and practice of strength training (3e éd.). Human Kinetics. https://canada.humankinetics.com/products/science-and-practice-of-strength-training-3rd-edition?srsltid=AfmBOor6Czl0hJkN4jLKReyADU4ZQKFOVMcqHtOs-v8SR_2mmGbJJt9B
force-endurance (n. f.) Lien copié dans le presse-papiers
Enoka, R. M., & Duchateau, J. (2008). Muscle fatigue: What, why and how it influences muscle function. Journal of Physiology, 586(1), 11–23. https://doi.org/10.1113/jphysiol.2007.139477
Stone, M. H., Stone, M., & Sands, W. A. (2007). Principles and practice of resistance training. Human Kinetics. https://books.google.ca/books/about/Principles_and_Practice_of_Resistance_Tr.html?id=TAVtYOrT1G8C&redir_esc=y
formule de Karvonen (n. f.) Lien copié dans le presse-papiers
Achten, J., & Jeukendrup, A. E. (2003). Heart rate monitoring: Applications and limitations. Sports Medicine, 33(7), 517–538. https://link.springer.com/article/10.2165/00007256-200333070-00004
Borresen, J., & Lambert, M. I. (2008). Autonomic control of heart rate during and after exercise. Sports Medicine, 38(8), 633–646. https://doi.org/10.2165/00007256-200838080-00002
Karvonen, M. J., Kentala, E., & Mustala, O. (1957). The effects of training on heart rate. Annales Medicinae Experimentalis et Biologiae Fenniae, 35, 307–315. https://pubmed.ncbi.nlm.nih.gov/13470504/
Swain, D. P., & Leutholtz, B. C. (1997). Heart rate reserve is equivalent to %VO₂ reserve, not to %VO₂max. Medicine & Science in Sports & Exercise, 29(3), 410–414. https://doi.org/10.1097/00005768-199703000-00018
fréquence cardiaque d’entraînement (n. f.) Lien copié dans le presse-papiers
Achten, J., & Jeukendrup, A. E. (2003). Heart rate monitoring: Applications and limitations. Sports Medicine, 33(7), 517–538. https://link.springer.com/article/10.2165/00007256-200333070-00004
American College of Sports Medicine. (2021). ACSM’s guidelines for exercise testing and prescription (11e éd.). Wolters Kluwer. www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
fréquence cardiaque de repos (n. f.) Lien copié dans le presse-papiers
American College of Sports Medicine. (2021). ACSM’s guidelines for exercise testing and prescription (11e éd.). Wolters Kluwer. www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
Aubert, A. E., Seps, B., & Beckers, F. (2003). Heart rate variability in athletes. Sports Medicine, 33(12), 889–919. https://doi.org/10.2165/00007256-200333120-00003
Buchheit, M. (2014). Monitoring training status with HR measures: Do all roads lead to Rome? Frontiers in Physiology, 5, 73. https://doi.org/10.3389/fphys.2014.00073
fréquence cardiaque de réserve (n. f.) Lien copié dans le presse-papiers
FCréserve = FCmax - FCrepos
Pour déterminer une fréquence cardiaque d’entraînement (FCentraînement) correspondant à une intensité d’exercice donnée, on utilise la formule de Karvonen qui repose notamment sur la FCR. Cette approche, plus précise que celle basée sur un pourcentage de la FCmax seule, tient compte des différences individuelles.
American College of Sports Medicine. (2021). ACSM’s guidelines for exercise testing and prescription (11e éd.). Wolters Kluwer. www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
Buchheit, M. (2014). Monitoring training status with HR measures: Do all roads lead to Rome? Frontiers in Physiology, 5, 73. https://doi.org/10.3389/fphys.2014.00073
Swain, D. P., & Franklin, B. A. (2002). VO2 reserve and the minimal intensity for improving cardiorespiratory fitness. Medicine and Science in Sports and Exercise, 34(1). https://pubmed.ncbi.nlm.nih.gov/11782661/
Swain, D. P., & Leutholtz, B. C. (1997). Heart rate reserve is equivalent to %V̇O₂ reserve, not to %V̇O₂max. Medicine & Science in Sports & Exercise, 29(3), 410–414. https://doi.org/10.1097/00005768-199703000-00018
fréquence cardiaque maximale (FCmax) (n. f.) Lien copié dans le presse-papiers
American College of Sports Medicine. (2021). ACSM’s guidelines for exercise testing and prescription (11e éd.). Wolters Kluwer. www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
Buchheit, M. (2014). Monitoring training status with HR measures: Do all roads lead to Rome? Frontiers in Physiology, 5, 73. https://doi.org/10.3389/fphys.2014.00073
Nes, B. M., Janszky, I., Vatten, L. J., Nilsen, T. I. L., Aspenes, S. T., & Wisløff, U. (2013). Estimating V̇O₂peak from a nonexercise prediction model: The HUNT study, Norway. Medicine & Science in Sports & Exercise, 43(11), 2024–2030. https://doi.org/10.1249/mss.0b013e31821d3f6f
Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37(1), 153–156. https://doi.org/10.1016/S0735-1097(00)01054-8
glucide (n. m.) Lien copié dans le presse-papiers
Baker, L., Rollo, I., Stein, K., & Jeukendrup, A. (2015). Acute effects of carbohydrate supplementation on intermittent sports performance. Nutrients, 7, 5733 – 5763. https://doi.org/10.3390/nu7075249.
Burke, L., Hawley, J., Wong, S., & Jeukendrup, A. (2011). Carbohydrates for training and competition. Journal of Sports Sciences, 29, S17 – S27. https://doi.org/10.1080/02640414.2011.585473.
Jeukendrup, A. (2014). A step towards personalized sports nutrition: Carbohydrate intake during exercise. Sports Medicine (Auckland, N.-Z.), 44, 25 – 33. https://doi.org/10.1007/s40279-014-0148-z.
Jeukendrup, A., & Gleeson, M. (2019). Sport nutrition. Human Kinetics. https://books.google.ca/books?hl=en&lr=&id=SMVlDwAAQBAJ&oi=fnd&pg=PR9&ots=oKq5VvNEKB&sig=-PUSxnsFmugN6nhl7BhO4O37-yk#v=onepage&q&f=false
Kerksick, C., Arent, S., Schoenfeld, B., Stout, J., Campbell, B., Wilborn, C., Taylor, L., Kalman, D., Smith‐Ryan, A., Kreider, R., Willoughby, D., Arciero, P., VanDusseldorp, T., Ormsbee, M., Wildman, R., Greenwood, M., Ziegenfuss, T., Aragon, A., & Antonio, J. (2017). International society of sports nutrition position stand: nutrient timing. Journal of the International Society of Sports Nutrition, 14. https://doi.org/10.1186/s12970-017-0189-4.
Mata, F., Valenzuela, P., Gimenez, J., Tur, C., Ferreria, D., Domínguez, R., Sánchez-Oliver, A., & Sanz, J. (2019). Carbohydrate qvailability and physical performance: Physiological overview and practical recommendations. Nutrients, 11. https://doi.org/10.3390/nu11051084.
Murray, R. K., Bender, D. A., Botham, K. M., Kennelly, P. J., Rodwell, V. W., & Weil, P. A. (2023). Harper’s illustrated biochemistry (32e éd.). McGraw-Hill. www.mheducation.com/highered/mhp/product/harper-s-illustrated-biochemistry-thirty-second-edition.html
Nielsen, L., Lambert, M., & Jeppesen, P. (2020). The effect of ingesting carbohydrate and proteins on qthletic performance: A systematic review and ,eta-qnalysis of randomized controlled trials. Nutrients, 12. https://doi.org/10.3390/nu12051483.
Thomas, D. T., Erdman, K. A., & Burke, L. M. (2016). Nutrition and athletic performance. Medicine and Science in Sports and Exercise, 48(3), 543-568. https://doi.org/10.1249/mss.0000000000000852
Williams, C., & Rollo, I. (2015). Carbohydrate nutrition and team sport performance. Sports Medicine (Auckland, N.-Z.), 45, 13 – 22. https://doi.org/10.1007/s40279-015-0399-3.
glycogène hépatique (n. m.) Lien copié dans le presse-papiers
Berg, J. M., Tymoczko, J. L., & Gatto, G. J. (2019). Biochemistry (9e éd.). W. H. Freeman. https://digrep.mchs.mw/handle/123456789/178
Brooks, G. A., Fahey, T. D., & Baldwin, K. M. (2019). Exercise physiology: Human bioenergetics and its applications. https://books.google.ca/books/about/Exercise_Physiology.html?id=rt1MyQEACAAJ&redir_esc=y
Fuchs, C., Gonzalez, J., Beelen, M., Cermak, N., Smith, F., Thelwall, P., Taylor, R., Trenell, M., Stevenson, E., & Van Loon, L. (2016). Sucrose ingestion after exhaustive exercise accelerates liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes. Journal of applied physiology, 120, 11, 1328-34 . https://doi.org/10.1152/japplphysiol.01023.2015.
Gonzalez, J., & Betts, J. (2018). Dietary sugars, exercise and hepatic carbohydrate metabolism. Proceedings of the Nutrition Society, 78, 246 – 256. https://doi.org/10.1017/s0029665118002604.
Gonzalez, J., Fuchs, C., Betts, J., & Van Loon, L. (2016). Liver glycogen metabolism during and after prolonged endurance-type exercise. American Journal of Physiology. Endocrinology and Metabolism, 311, 3, E543-53 . https://doi.org/10.1152/ajpendo.00232.2016.
Jeukendrup, A., & Gleeson, M. (2019). Sport nutrition. Human Kinetics. https://books.google.ca/books?hl=en&lr=&id=SMVlDwAAQBAJ&oi=fnd&pg=PR9&ots=oKq5VvNEKB&sig=-PUSxnsFmugN6nhl7BhO4O37-yk#v=onepage&q&f=false
Murray, R. K., Bender, D. A., Botham, K. M., Kennelly, P. J., Rodwell, V. W., & Weil, P. A. (2023). Harper’s illustrated biochemistry (32e éd.). McGraw-Hill. www.mheducation.com/highered/mhp/product/harper-s-illustrated-biochemistry-thirty-second-edition.html
Thomas, D. T., Erdman, K. A., & Burke, L. M. (2016). Nutrition and athletic performance. Medicine and Science in Sports and Exercise, 48(3), 543-568. https://doi.org/10.1249/mss.0000000000000852
Wahren, J., & Ekberg, K. (2007). Splanchnic regulation of glucose production. Annual review of nutrition, 27, 329-45 . https://doi.org/10.1146/annurev.nutr.27.061406.093806
glycogène musculaire (n. m.) Lien copié dans le presse-papiers
Areta, J., & Hopkins, W. (2018). Skeletal muscle glycogen content at rest and during endurance exercise in humans: A meta-analysis. Sports Medicine, 48, 2091-2102. https://doi.org/10.1007/s40279-018-0941-1.
Berg, J. M., Tymoczko, J. L., & Gatto, G. J. (2019). Biochemistry (9e éd.). W. H. Freeman. https://digrep.mchs.mw/handle/123456789/178
Brooks, G. A., Fahey, T. D., & Baldwin, K. M. (2019). Exercise physiology: Human bioenergetics and its applications. McGraw-Hill Education. https://books.google.ca/books/about/Exercise_Physiology.html?id=rt1MyQEACAAJ&redir_esc=y
Hargreaves, M., & Spriet, L. L. (2020). Skeletal muscle energy metabolism during exercise. Nature Metabolism, 2(9), 817–828. www.nature.com/articles/s42255-020-0251-4
Hearris, M., Hammond, K., Fell, J., & Morton, J. (2018). Regulation of muscle glycogen metabolism during exercise: Implications for endurance performance and training adaptations. Nutrients, 10. https://doi.org/10.3390/nu10030298.
Hingst, J., Bruhn, L., Hansen, M., Rosschou, M., Birk, J., Fentz, J., Foretz, M., Viollet, B., Sakamoto, K., Færgeman, N., Havelund, J., Parker, B., James, D., Kiens, B., Richter, E., Jensen, J., & Wojtaszewski, J. (2018). Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal muscle. Molecular Metabolism, 16, 24 – 34. https://doi.org/10.1016/j.molmet.2018.07.001.
Ivy, J. L. (1998). Glycogen resynthesis after exercise: Effect of carbohydrate intake. International Journal of Sports Medicine, 19(Suppl 2), S142–S145. DOI: 10.1055/s-2007-971981
Jeukendrup, A., & Gleeson, M. (2019). Sport nutrition. Human Kinetics. https://books.google.ca/books?hl=en&lr=&id=SMVlDwAAQBAJ&oi=fnd&pg=PR9&ots=oKq5VvNEKB&sig=-PUSxnsFmugN6nhl7BhO4O37-yk#v=onepage&q&f=false
Ørtenblad, N., Westerblad, H., & Nielsen, J. (2013). Muscle glycogen stores and fatigue. The Journal of Physiology, 591. https://doi.org/10.1113/jphysiol.2013.251629.
Sandilands, R., & Marcotte-Chénard, A. (2024). Glycogen pools and utilization during exercise: future implication on glucose regulation. The Journal of Physiology, 602. https://doi.org/10.1113/jp287294.
Schytz, C., Ørtenblad, N., Gejl, K., & Nielsen, J. (2024). Differential utilisation of subcellular skeletal muscle glycogen pools: a comparative analysis between 1 and 15 min of maximal exercise. The Journal of Physiology, 602. https://doi.org/10.1113/jp285762.
Thomas, D. T., Erdman, K. A., & Burke, L. M. (2016). Nutrition and athletic performance. Medicine and Science in Sports and Exercise, 48(3), 543-568. https://doi.org/10.1249/mss.0000000000000852.
Van Loon, L. J. C., Greenhaff, P. L., Constantin-Teodosiu, D., Saris, W. H. M., & Wagenmakers, A. J. M. (2001). The effects of increasing exercise intensity on muscle fuel utilisation in humans. Journal of Physiology, 536(1), 295–304. https://doi.org/10.1111/j.1469-7793.2001.00295.x
Vigh-Larsen, J., Ørtenblad, N., Spriet, L., Overgaard, K., & Mohr, M. (2021). Muscle glycogen metabolism and high-intensity exercise performance: A narrative review. Sports Medicine, 51, 1855 – 1874. https://doi.org/10.1007/s40279-021-01475-0.
glycolyse à haut débit (n. f.) Lien copié dans le presse-papiers
Brooks, G. A. (2018). The science and translation of lactate shuttle theory. Cell Metabolism, 27(4), 757-785. www.cell.com/cell-metabolism/fulltext/S1550-4131(18)30186-4
Ferguson, B. S., et al. (2018). Lactate metabolism: Historical context, prior misinterpretations, and current understanding. European Journal of Applied Physiology, 118(4), 691-728. https://doi.org/10.1007/s00421-017-3795-6
Robergs, R. A., Ghiasvand, F., & Parker, D. (2004). Biochemistry of exercise-induced metabolic acidosis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 287(3), R502-R516. https://doi.org/10.1152/ajpregu.00114.2004
Société Française de Physiologie de l’Exercice et du Sport (SFP-EX) – Recommandations terminologiques 2020-2024 (communications internes et formations continues).
habileté motrice (n. f.) Lien copié dans le presse-papiers
Variantes régionales : France/Belgique : habileté motrice; Suisse : parfois compétence motrice
Gentile, A. M. (1972). A working model of skill acquisition with application to teaching. Quest, 17(1), 3–23. https://doi.org/10.1080/00336297.1972.10519717
Magill, R. A., & Anderson, D. I. (2024). Motor learning and control: Concepts and applications. McGraw-Hill. www.mheducation.com/highered/product/motor-learning-and-control-concepts-and-applications-magill.html
Schmidt, R. A., & Lee, T. D. (2020). Motor learning and performance: From principles to application (6ᵉ éd.). Human Kinetics. https://canada.humankinetics.com/products/motor-learning-and-performance-6th-edition-with-web-study-guide-loose-leaf-edition?srsltid=AfmBOorhsaoMXp1f4jASX6bXAWZLKn9IgsHe5gNxWuxJUt4UGL6PCW5B
hydratation (n. f.) Lien copié dans le presse-papiers
Armstrong, L. (2021). Rehydration during endurance exercise: Challenges, research, options, methods. Nutrients, 13. https://doi.org/10.3390/nu13030887.
Fan, P., Burns, S., & Lee, J. (2020). Efficacy of ingesting an oral rehydration solution after exercise on fluid balance and endurance performance. Nutrients, 12. https://doi.org/10.3390/nu12123826.
Jeukendrup, A., & Gleeson, M. (2019). Sport nutrition. Human Kinetics. https://books.google.ca/books?hl=en&lr=&id=SMVlDwAAQBAJ&oi=fnd&pg=PR9&ots=oKq5VvNEKB&sig=-PUSxnsFmugN6nhl7BhO4O37-yk#v=onepage&q&f=false
Kenefick, R. W. (2018). Drinking strategies: Planned drinking versus drinking to thirst. Sports Medicine, 48(S1), S31–S37. https://doi.org/10.1007/s40279-017-0844-6
Latzka, W., & Montain, S. (1999). Water and electrolyte requirements for exercise. Clinics in Sports Medicine, 18, 3, 513-24 . https://doi.org/10.1016/s0278-5919(05)70165-4.
Pérez-Castillo, Í., Williams, J., López-Chicharro, J., Mihic, N., Rueda, R., Bouzamondo, H., & Horswill, C. (2023). Compositional aspects of beverages designed to promote hydration before, during, and after exercise: Concepts revisited. Nutrients, 16. https://doi.org/10.3390/nu16010017.
Rowlands, D., Kopetschny, B., & Badenhorst, C. (2021). The hydrating effects of hypertonic, isotonic and hypotonic sports drinks and waters on central hydration during continuous exercise: A systematic meta-analysis and perspective. Sports Medicine (Auckland, N.-Z.), 52, 349 – 375. https://doi.org/10.1007/s40279-021-01558-y.
Sawka, M., Burke, L., Eichner, E., Maughan, R., Montain, S., & Stachenfeld, N. (2007). American College of Sports Medicine position stand. Exercise and fluid replacement. Medicine and Science in Sports and Exercise, 39, 2, 377-90 . https://doi.org/10.1016/s0162-0908(08)70206-x.
Sawka, M. N., & Montain, S. J. (2000). Fluid and electrolyte supplementation for exercise heat stress. American Journal of Clinical Nutrition, 72(2), 564S–572S. https://doi.org/10.1093/ajcn/72.2.564S
Stand, A. P. (2009). Exercise and fluid replacement. Medicine and Science in Sports and Exercise, 39(2), 377-390. https://doi.org/10.1249/mss.0b013e31802ca597
hydrodynamique (n. f.) Lien copié dans le presse-papiers
Barbosa, T. M., Barbosa, A. C., Simbaña Escobar, D., Mullen, G. J., Cossor, J. M., Hodierne, R., … & Mason, B. R. (2023). The role of the biomechanics analyst in swimming training and competition analysis. Sports Biomechanics, 22(12), 1734-1751. https://doi.org/10.1080/14763141.2021.1960417
Maglischo, E. W. (2003). Swimming fastest. Human Kinetics. https://books.google.ca/books/about/Swimming_Fastest.html?id=cSSW4RhZOiwC&redir_esc=y
Pendergast, D., Mollendorf, J., Zamparo, P., Termin, A., Bushnell, D., & Paschke, D. (2005). The influence of drag on human locomotion in water. Undersea Hyperb Med, 32(1), 45-57. https://pubmed.ncbi.nlm.nih.gov/15796314/
Toussaint, H. M., & Truijens, M. J. (2005). Biomechanical aspects of peak performance in human swimming. Animal Biology, 55(1), 17–40. https://doi.org/10.1163/1570756053276907
hypertrophie musculaire (n. f.) Lien copié dans le presse-papiers
Grgic, J., Schoenfeld, B., & Mikulic, P. (2020). Effects of plyometric vs. resistance training on skeletal muscle hypertrophy: A review. Journal of Sport and Health Science, 10, 530 – 536. https://doi.org/10.1016/j.jshs.2020.06.010.
Haun, C. T., Vann, C. G., Roberts, B. M., Vigotsky, A. D., Schoenfeld, B. J., & Roberts, M. D. (2019). A critical evaluation of the biological construct skeletal muscle hypertrophy: Size matters but so does the measurement. Frontiers in Physiology, 10, 247.
Konopka, A., & Harber, M. (2014). Skeletal muscle hypertrophy after aerobic exercise training. Exercise and Sport Sciences Reviews, 42, 53–61. https://doi.org/10.1249/jes.0000000000000007.
Lopez, P., Radaelli, R., Taaffe, D., Newton, R., Galvão, D., Trajano, G., Teodoro, J., Kraemer, W., Häkkinen, K., & Pinto, R. (2020). Resistance training load effects on muscle hypertrophy and strength gain: Systematic review and network meta-analysis. Medicine and Science in Sports and Exercise, 53, 1206-1216. https://doi.org/10.1249/mss.0000000000002585.
Morton, R. W., et al. (2018). A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training–induced gains in muscle mass and strength. British Journal of Sports Medicine, 52(6), 376–384. https://doi.org/10.1136/bjsports-2017-097608
Phillips, S. (2014). A brief review of critical processes in exercise-induced muscular hypertrophy. Sports Medicine (Auckland, N Z.), 44, 71 – 77. https://doi.org/10.1007/s40279-014-0152-3.
Schoenfeld, B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. Journal of Strength and Conditioning Research, 24(10), 2857–2872. https://doi.org/10.1519/JSC.0b013e3181e840f3
Van Every, D. W., Lees, M. J., Wilson, B., Nippard, J., & Phillips, S. M. (2025). Load-induced human skeletal muscle hypertrophy: Mechanisms, myths, and misconceptions. Journal of Sport and Health Science, 101104. www.sciencedirect.com/science/article/pii/S2095254625000869
Wackerhage, H., Schoenfeld, B., Hamilton, D., Lehti, M., & Hulmi, J. (2019). Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. Journal of Applied Physiology, 126, 30-43 . https://doi.org/10.1152/japplphysiol.00685.2018.
imagerie mentale (n. f.) Lien copié dans le presse-papiers
Cumming, J., & Ramsey, R. (2008). Imagery interventions in sport. In Advances in applied sport psychology (pp. 15-46). Routledge. www.taylorfrancis.com/chapters/edit/10.4324/9780203887073-7/imagery-interventions-sport-jennifer-cumming-richard-ramsey
Cumming, J., & Williams, S. E. (2012). 11 The role of imagery in performance. The Oxford handbook of sport and performance psychology, 213. https://books.google.ca/books?hl=en&lr=&id=BVsALG2k-uoC&oi=fnd&pg=PA213&dq=Cumming,+J.,+%26+Williams,+S.+E.+(2012).+The+role+of+imagery+in+performance.+In+S.+Murphy+(Ed.),+The+Oxford+handbook+of+sport+and+performance+psychology+(pp.+213%E2%80%93232).+Oxford+University+Press.&ots=uz69jx_LgR&sig=h8_mToUmG55sDENTKybmp8UgEUs#v=onepage&q&f=false
Guillot, A., & Collet, C. (2008). Construction of the motor imagery integrative model in sport: A review and theoretical investigation of motor imagery use. International Review of Sport and Exercise Psychology, 1(1), 31–44. https://doi.org/10.1080/17509840701823139
Guillot, A., & Collet, C. (2010). The neurophysiological foundations of mental and motor imagery. Oxford University Press. https://global.oup.com/academic/product/the-neurophysiological-foundations-of-mental-and-motor-imagery-9780199546251?cc=ca&lang=en&#
Holmes, P. S., & Calmels, C. (2008). A neuroscientific review of imagery and observation use in sport. Journal of Motor Behavior, 40(5), 433–445. https://doi.org/10.3200/JMBR.40.5.433-445
Moran, A. (2016). The psychology of concentration in sport performers: A cognitive analysis. Routledge. https://doi.org/10.4324/9781315784946
Weinberg, R. S., & Gould, D. (2023). Foundations of sport and exercise psychology (8e éd.). Human Kinetics. https://books.google.ca/books?hl=en&lr=&id=GHGLEAAAQBAJ&oi=fnd&pg=PR3&dq=Weinberg,+R.+S.,+%26+Gould,+D.+(2018).+Foundations+of+sport+and+exercise+psychology+(7th+ed.).+Human+Kinetics.&ots=Ju-BXeMt5W&sig=z1DcvGcLdN8DbgjwgLQBFTa8oQA#v=onepage&q&f=false
impédance bioélectrique (n. f.) Lien copié dans le presse-papiers
Campa, F., Gobbo, L., Stagi, S., Cyrino, L., Toselli, S., Marini, E., & Coratella, G. (2022). Bioelectrical impedance analysis versus reference methods in the assessment of body composition in athletes. European Journal of Applied Physiology, 122, 561 – 589. https://doi.org/10.1007/s00421-021-04879-y.
De Castro, J., De Lima, T., & Silva, D. (2018). Body composition estimation in children and adolescents by bioelectrical impedance analysis: A systematic review. Journal of Bodywork and Movement Therapies, 22, 1, 134-146 . https://doi.org/10.1016/j.jbmt.2017.04.010.
Ward, L. (2018). Bioelectrical impedance analysis for body composition assessment: reflections on accuracy, clinical utility, and standardisation. European Journal of Clinical Nutrition, 73, 194-199. https://doi.org/10.1038/s41430-018-0335-3.
intensité de l’exercice (n. f.) Lien copié dans le presse-papiers
Elle peut être exprimée en valeur absolue (ex. : fréquence cardiaque de référence, consommation d’oxygène, vitesse de déplacement, lactatémie, puissance mécanique), ou en valeur relative, c’est-à-dire en pourcentage d’une capacité maximale individuelle (ex. : effort perçu, pourcentage de la fréquence cardiaque maximale, pourcentage de la fréquence cardiaque de réserve, pourcentage de la consommation maximale d’oxygène (V̇O₂max), pourcentage de la puissance limite sur une durée donnée, pourcentage de la charge maximale (1RM)). Elle détermine la quantité de stress imposée à l’organisme et le degré de difficulté globale d’une séance d’exercice physique, de même que la nature des adaptations physiologiques induites (aérobie, anaérobie, musculaire, métabolique). En sports d’endurance, l’intensité est généralement catégorisée selon des zones. Une évaluation rigoureuse de l’intensité permet d’ajuster la charge d’entraînement, de prévenir la fatigue excessive et d’optimiser les adaptations spécifiques selon les déterminants de la performance qui sont ciblés. Intensité et degré de difficulté sont souvent confondus, alors qu’un séance d’entraînement peut comprendre des périodes d’intensité très élevée sans nécessairement être difficile (ex. : sprints sur 50 m à 80 % de la vitesse maximale entrecoupés de périodes de récupération de plus de 4 minutes); inversement, une séance à intensité modérée peut être exténuante si elle dure plusieurs heures.
American College of Sports Medicine. (2021). ACSM’s guidelines for exercise testing and prescription (11e éd.). Wolters Kluwer. www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
Borg, G. (1998). Borg’s perceived exertion and pain scales. Human Kinetics. https://psycnet.apa.org/record/1998-07179-000
Buchheit, M. (2014). Monitoring training status with HR measures: Do all roads lead to Rome? Frontiers in Physiology, 5, 73. https://doi.org/10.3389/fphys.2014.00073
Howley, E. T. (2001). Type of activity: Resistance, aerobic and leisure versus occupational physical activity. Medicine & Science in Sports & Exercise, 33(6 Suppl.), S364–S369. https://doi.org/10.1097/00005768-200106001-00005
Seiler, K. S., & Kjerland, G. Ø. (2006). Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution?. Scandinavian Journal of Medicine & Science in Sports, 16(1), 49-56. https://doi.org/10.1111/j.1600-0838.2004.00418.x
kinanthropométrie (n. f.) Lien copié dans le presse-papiers
Ackland, T. R., Lohman, T. G., Sundgot-Borgen, J., Maughan, R. J., Meyer, N. L., Stewart, A. D., & Müller, W. (2012). Current status of body composition assessment in sport: Review and position statement of the IOC Medical Commission Working Group. Sports Medicine, 42(3), 227–249. https://doi.org/10.2165/11597140-000000000-00000
Heyward, V. H., & Wagner, D. R. (2004). Applied body composition assessment (2ᵉ éd.). Human Kinetics. https://canada.humankinetics.com/products/applied-body-composition-assessment-2nd-edition?srsltid=AfmBOooH5lNJLpQWrLcJ3W7QL9nAhG1bk7TXA3o8h300H66HR5mWqKbx
Marfell-Jones, M., Stewart, A., Olds, T., & Carter, L. L. (2019). International Standards for Anthropometric Assessment. International Society for the Advancement of Kinanthropometry (ISAK). www.isak.global/
Norton, K., & Olds, T. (2004). Anthropometrica: A textbook of body measurement for sports and health courses. Routledge. www.google.ca/books/edition/Anthropometrica/Bkk8FuB0P4IC?hl=fr&gbpv=1&dq=Norton,+K.,+%26+Olds,+T.+(2018).+Anthropometrica:+A+textbook+of+body+measurement+for+sports+and+health+courses.+Routledge.&printsec=frontcover
lactate (n. m.) Lien copié dans le presse-papiers
Brooks, G. A. (2018). The science and translation of lactate shuttle theory. Cell Metabolism, 27(4), 757–785. https://doi.org/10.1016/j.cmet.2018.03.008
Brooks, G. A., Fahey, T. D., & Baldwin, K. M. (2019). Exercise physiology: Human bioenergetics and its applications. McGraw-Hill Education. https://books.google.ca/books/about/Exercise_Physiology.html?id=rt1MyQEACAAJ&redir_esc=y
Gladden, L. B. (2004). Lactate metabolism: A new paradigm for the third millennium. Journal of Physiology, 558(1), 5–30. https://doi.org/10.1113/jphysiol.2003.058701
Péronnet, F., & Aguilaniu, B. (2014). Signification physiologique et interprétation clinique de la lactatémie et du pH au cours de l’EFX incrémentale. Revue des maladies respiratoires, 31(6), 525–551. www.sciencedirect.com/science/article/abs/pii/S0761842514001168
Robergs, R. A., Ghiasvand, F., & Parker, D. (2004). Biochemistry of exercise-induced metabolic acidosis. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 287(3), R502–R516. https://doi.org/10.1152/ajpregu.00114.2004
lactatémie (n. f.) Lien copié dans le presse-papiers
American College of Sports Medicine. (2021). ACSM’s guidelines for exercise testing and prescription (11e éd.). Wolters Kluwer. www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
Brooks, G. A. (2018). The science and translation of lactate shuttle theory. Cell Metabolism, 27(4), 757–785. https://doi.org/10.1016/j.cmet.2018.03.008
Brooks, G. A., Arevalo, J. A., Osmond, A. D., Leija, R. G., Curl, C. C., & Tovar, A. P. (2021). Lactate in contemporary biology: A phoenix risen. The Journal of Physiology. https://doi.org/10.1113/JP280955
Faude, O., Kindermann, W., & Meyer, T. (2009). Lactate threshold concepts: How valid are they? Sports Medicine, 39(6), 469–490. https://doi.org/10.2165/00007256-200939060-00003
Gladden, L. B. (2004). Lactate metabolism: A new paradigm for the third millennium. Journal of Physiology, 558(1), 5–30. https://doi.org/10.1113/jphysiol.2003.058701
Goodwin, M. L., Harris, J. E., Hernández, A., & Gladden, L. B. (2007). Blood lactate measurements and analysis during exercise: A guide for clinicians. Journal of Diabetes Science and Technology, 1(4), 558–569. https://doi.org/10.1177/193229680700100414
Péronnet, F., & Aguilaniu, B. (2006). Lactate: The redox shuttle in exercise metabolism. Canadian Journal of Applied Physiology, 31(6), 744–762.
lipoxmax (n. m.) Lien copié dans le presse-papiers
Achten, J., & Jeukendrup, A. E. (2003). Maximal fat oxidation during exercise in trained men. International Journal of Sports Medicine, 24(8), 603–608. https://doi.org/10.1055/s-2003-43265
Folch, N., Péronnet, F., Massicotte, D., Duclos, M., Lavoie, C., & Hillaire-Marcel, C. (2001). Metabolic response to small and large C13 C-labelled pasta meals following rest or exercise in man. British Journal of Nutrition, 85, 671–680. https://doi.org/10.1079/BJN2001325.
Jeukendrup, A. E., & Wallis, G. A. (2005). Measurement of substrate oxidation during exercise by means of gas exchange measurements. International Journal of Sports Medicine, 26(S1), S28–S37. https://doi.org/10.1055/s-2004-830512
Maunder, E., Plews, D. J., & Kilding, A. E. (2018). Contextualising maximal fat oxidation during exercise: Determinants and normative values. Frontiers in Physiology, 9, 599. https://doi.org/10.3389/fphys.2018.00599
macronutriment (n. m.) Lien copié dans le presse-papiers
Burke, L. M., & Deakin, V. (Eds.). (2021). Clinical sports nutrition (6ᵉ éd.). McGraw-Hill. https://books.google.ca/books/about/Clinical_Sports_Nutrition_6th_Edition.html?id=zNCYzgEACAAJ&redir_esc=y
Institute of Medicine (IOM). (2005). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. National Academies Press. https://nap.nationalacademies.org/catalog/10490/dietary-reference-intakes-for-energy-carbohydrate-fiber-fat-fatty-acids-cholesterol-protein-and-amino-acids
Jeukendrup, A., & Gleeson, M. (2019). Sport nutrition. Human Kinetics. https://books.google.ca/books?hl=en&lr=&id=SMVlDwAAQBAJ&oi=fnd&pg=PR9&ots=oKq5VvNEKB&sig=-PUSxnsFmugN6nhl7BhO4O37-yk#v=onepage&q&f=false
Thomas, D. T., Erdman, K. A., & Burke, L. M. (2016). Nutrition and athletic performance. Medicine and Science in Sports and Exercise, 48(3), 543-568. https://doi.org/10.1249/mss.0000000000000852
Thomas, D. T., Erdman, K. A., & Burke, L. M. (2016). Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. Journal of the Academy of Nutrition and Dietetics, 116(3), 501-528. https://pubmed.ncbi.nlm.nih.gov/26920240/
masse adipeuse (n. f.) Lien copié dans le presse-papiers
Heymsfield, S. B., & Wadden, T. A. (2017). Mechanisms, pathophysiology, and management of obesity. New England Journal of Medicine, 376(3), 254–266. https://doi.org/10.1056/NEJMra1514009
Kyle, U. G., et al. (2004). Bioelectrical impedance analysis—Part I: Review of principles and methods. Clinical Nutrition, 23(5), 1226–1243. https://doi.org/10.1016/j.clnu.2004.06.004
Kyle, U. G., et al. (2004). Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clinical Nutrition, 23(6), 1430–1453. https://doi.org/10.1016/j.clnu.2004.09.012
masse corporelle (n. f.) Lien copié dans le presse-papiers
Bull, F. C., Al-Ansari, S. S., Biddle, S., Borodulin, K., Buman, M. P., Cardon, G., … & Willumsen, J. F. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. British Journal of Sports Medicine, 54(24), 1451-1462. https://doi.org/10.1136/bjsports-2020-102955
Kyle, U. G., et al. (2004). Bioelectrical impedance analysis—Part I: Review of principles and methods. Clinical Nutrition, 23(5), 1226–1243. https://doi.org/10.1016/j.clnu.2004.06.004
Kyle, U. G., et al. (2004). Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clinical Nutrition, 23(6), 1430–1453. https://doi.org/10.1016/j.clnu.2004.09.012
masse grasse (n. f.) Lien copié dans le presse-papiers
Heymsfield, S. B., et al. (2005). Human body composition (2e éd.). Human Kinetics. https://books.google.ca/books/about/Human_Body_Composition.html?id=_WoPgY4KAxgC&redir_esc=y
Kyle, U. G., Earthman, C. P., Pichard, C., & Coss-Bu, J. A. (2015). Body composition during growth in children: limitations and perspectives of bioelectrical impedance analysis. European Journal of Clinical Nutrition, 69(12), 1298-1305. www.nature.com/articles/ejcn201586
masse lipidique (n. f.) Lien copié dans le presse-papiers
Ackland, T. R., Lohman, T. G., Sundgot-Borgen, J., Maughan, R. J., Meyer, N. L., Stewart, A. D., & Müller, W. (2012). Current status of body composition assessment in sport: Review and position statement of the IOC Medical Commission Working Group. Sports Medicine, 42(3), 227–249. https://doi.org/10.2165/11597140-000000000-00000
American College of Sports Medicine. (2021). ACSM’s guidelines for exercise testing and prescription (11e éd.). Wolters Kluwer. www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
Heyward, V. H., & Wagner, D. R. (2004). Applied body composition assessment (2ᵉ éd.). Human Kinetics. https://canada.humankinetics.com/products/applied-body-composition-assessment-2nd-edition?srsltid=AfmBOooH5lNJLpQWrLcJ3W7QL9nAhG1bk7TXA3o8h300H66HR5mWqKbx
Marfell-Jones, M., Stewart, A., Olds, T., & Carter, L. L. (2019). International Standards for Anthropometric Assessment. International Society for the Advancement of Kinanthropometry (ISAK). www.isak.global/
Wells, J. C. K., & Fewtrell, M. S. (2006). Measuring body composition. Archives of Disease in Childhood, 91(7), 612–617. https://doi.org/10.1136/adc.2005.085522
masse maigre (n. f.) Lien copié dans le presse-papiers
Ackland, T. R., Lohman, T. G., Sundgot-Borgen, J., Maughan, R. J., Meyer, N. L., Stewart, A. D., & Müller, W. (2012). Current status of body composition assessment in sport: Review and position statement of the IOC Medical Commission Working Group. Sports Medicine, 42(3), 227–249. https://doi.org/10.2165/11597140-000000000-00000
American College of Sports Medicine. (2021). ACSM’s guidelines for exercise testing and prescription (11e éd.). Wolters Kluwer. www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
Heymsfield, S. B., & Wadden, T. A. (2017). Mechanisms, pathophysiology, and management of obesity. New England Journal of Medicine, 376(3), 254–266. https://doi.org/10.1056/NEJMra1514009
Heyward, V. H., & Wagner, D. R. (2004). Applied body composition assessment (2ᵉ éd.). Human Kinetics. https://canada.humankinetics.com/products/applied-body-composition-assessment-2nd-edition?srsltid=AfmBOooH5lNJLpQWrLcJ3W7QL9nAhG1bk7TXA3o8h300H66HR5mWqKbx
Lee, S. Y., & Gallagher, D. (2008). Assessment methods in human body composition. Current Opinion in Clinical Nutrition and Metabolic Care, 11(5), 566–572. https://doi.org/10.1097/MCO.0b013e32830b5f23
Wang, Z. M., Pierson, R. N., & Heymsfield, S. B. (1992). The five-level model: A new approach to organizing body composition research. American Journal of Clinical Nutrition, 56(1), 19–28. https://doi.org/10.1093/ajcn/56.1.19
Wells, J. C. K., & Fewtrell, M. S. (2006). Measuring body composition. Archives of Disease in Childhood, 91(7), 612–617. https://doi.org/10.1136/adc.2005.085522
métabolisme (n. m.) Lien copié dans le presse-papiers
Berg, J. M., Tymoczko, J. L., & Gatto, G. J. (2019). Biochemistry (9e éd.). W. H. Freeman. https://digrep.mchs.mw/handle/123456789/178
Brooks, G. A., Fahey, T. D., & Baldwin, K. M. (2019). Exercise physiology: Human bioenergetics and its applications. McGraw-Hill Education. https://books.google.ca/books/about/Exercise_Physiology.html?id=rt1MyQEACAAJ&redir_esc=y
Hargreaves, M., & Spriet, L. L. (2020). Exercise metabolism: Fuels for the fire. Cold Spring Harbor Perspectives in Medicine, 10(7), a037814. https://doi.org/10.1101/cshperspect.a029744
McArdle, W. D., Katch, F. I., & Katch, V. L. (2023). Exercise physiology: nutrition, energy, and human performance (9e éd.). Wolters Kluwer. https://shop.lww.com/Exercise-Physiology/p/9781975217297
métabolisme énergétique (n. m.) Lien copié dans le presse-papiers
American College of Sports Medicine. (2021). ACSM’s guidelines for exercise testing and prescription (11e éd.). Wolters Kluwer. www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
Brooks, G. A., Fahey, T. D., & Baldwin, K. M. (2019). Exercise physiology: Human bioenergetics and its applications. McGraw-Hill Education. https://books.google.ca/books/about/Exercise_Physiology.html?id=rt1MyQEACAAJ&redir_esc=y
McArdle, W. D., Katch, F. I., & Katch, V. L. (2023). Exercise physiology: nutrition, energy, and human performance (9e éd.). Wolters Kluwer. https://shop.lww.com/Exercise-Physiology/p/9781975217297
Péronnet, F., & Massicotte, D. (1991). Table of nonprotein respiratory quotient: an update. Journal Canadien Des Sciences Du Sport [Canadian Journal of Sport Sciences], 16(1), 23–29. https://pubmed.ncbi.nlm.nih.gov/1645211/
Spriet, L. L. (2014). New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Medicine, 44(Suppl. 1), 87–96. https://doi.org/10.1007/s40279-014-0154-1
méthode d’entraînement (n. f.) Lien copié dans le presse-papiers
Buchheit, M., & Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sports Medicine, 43(5), 313-338. https://doi.org/10.1007/s40279-013-0029-x
Commission nationale de terminologie STAPS – Lexique méthodologique (mise à jour 2023).
Laursen, P. B., & Buchheit, M. (2018). Science and application of high-intensity interval training. Human Kinetics. https://canada.humankinetics.com/products/science-and-application-of-high-intensity-interval-training?srsltid=AfmBOoq0HB6_EbwVFXLLwpTqUIipdz9SLDG5fJpw8pMcuvv4mdjvwqD9
Seiler, S. (2010). What is best practice for training intensity and duration distribution in endurance athletes? International Journal of Sports Physiology and Performance, 5(3), 276-291. https://doi.org/10.1123/ijspp.5.3.276
Thibault, G. (2009). Entraînement cardio : Sports d’endurance et performance. Vélo Québec. www.velo.qc.ca/magazine/livres-guides-et-cartes/entrainement-cardio/
Zatsiorsky, V. M., & Kraemer, W. J. (2021). Science and practice of strength training (3e éd.). Human Kinetics. https://canada.humankinetics.com/products/science-and-practice-of-strength-training-3rd-edition?srsltid=AfmBOor6Czl0hJkN4jLKReyADU4ZQKFOVMcqHtOs-v8SR_2mmGbJJt9B
micronutriment (n. m.) Lien copié dans le presse-papiers
Burke, L. M., & Deakin, V. (Eds.). (2021). Clinical sports nutrition (6ᵉ éd.). McGraw-Hill. https://books.google.ca/books/about/Clinical_Sports_Nutrition_6th_Edition.html?id=zNCYzgEACAAJ&redir_esc=y
Gropper, S. S., Smith, J. L., & Carr, T. P. (2021). Advanced nutrition and human metabolism (8e éd.). Cengage. www.cengage.ca/c/advanced-nutrition-and-human-metabolism-8e-gropper-carr-smith/9780357449813/
Manore, M. M., & Thompson, J. L. (2009). Sport nutrition for health and performance (2e éd.). Human Kinetics. https://canada.humankinetics.com/products/sport-nutrition-for-health-and-performance-2nd-edition?srsltid=AfmBOoqfGaZLLtcMLWAGA5g-MrpJKIXDK_9MAs_jFOjXRu9dptA111lo
Maughan, R. J., Burke, L. M., Dvorak, J., Larson-Meyer, D. E., Peeling, P., Phillips, S. M., … Engebretsen, L. (2018). IOC consensus statement: Dietary supplements and the high-performance athlete. British Journal of Sports Medicine, 52(7), 439–455. https://doi.org/10.1136/bjsports-2018-099027
Thomas, D. T., Erdman, K. A., & Burke, L. M. (2016). Nutrition and athletic performance. Medicine and Science in Sports and Exercise, 48(3), 543-568. https://doi.org/10.1249/mss.0000000000000852
mobilité articulaire (n. f.) Lien copié dans le presse-papiers
Alter, M. J. (2004). Science of flexibility (3ᵉ éd.). Human Kinetics. https://books.google.ca/books?hl=en&lr=&id=3pPAWd1PW2sC&oi=fnd&pg=PA3&dq=Alter,+M.+J.+(2004).+Science+of+Flexibility+(3%E1%B5%89+%C3%A9d.).+Human+Kinetics.&ots=6qwIGouU_f&sig=2nl8DwskXuqj_Cuk2jIQQK4m9ow#v=onepage&q&f=false
American College of Sports Medicine. (2021). ACSM’s guidelines for exercise testing and prescription (11e éd.). Wolters Kluwer. www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
Behm, D. G., Blazevich, A. J., Kay, A. D., & McHugh, M. (2016). Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: A systematic review. Applied Physiology, Nutrition, and Metabolism, 41(1), 1–11. https://doi.org/10.1139/apnm-2015-0235
Cook, G. (2011). Movement: Functional movement systems: Screening, assessment, corrective strategies. On target Publications. https://books.google.ca/books/about/Movement.html?id=iOadmwEACAAJ&redir_esc=y
Magnusson, S. P., & Kjaer, M. (2019). The impact of loading, unloading, ageing and injury on the human tendon. Journal of Physiology, 597(5), 1283–1298. https://doi.org/10.1113/JP275450
modalité de récupération (n. f.) Lien copié dans le presse-papiers
Barnett, A. (2006). Using recovery modalities between training sessions in elite athletes: Does it help? Sports Medicine, 36(9), 781–796. https://doi.org/10.2165/00007256-200636090-00005
Bieuzen, F., Bleakley, C. M., & Costello, J. T. (2013). Contrast water therapy and exercise induced muscle damage: A systematic review and meta-analysis. PLoS ONE, 8(4), e62356. https://doi.org/10.1371/journal.pone.0062356
Dupuy, O., Douzi, W., Theurot, D., Bosquet, L., & Dugué, B. (2018). An evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, soreness, fatigue, and inflammation: A systematic review with meta-analysis. Frontiers in Physiology, 9, 403. https://doi.org/10.3389/fphys.2018.00403
Halson, S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports Medicine, 44(S2), 139–147. https://doi.org/10.1007/s40279-014-0253-z
Kellmann, M., & Beckmann, J. (2018). Recovery and well-being in sport and exercise. Routledge. www.routledge.com/Recovery-and-Well-being-in-Sport-and-Exercise/Kellmann-Beckmann/p/book/9781032191553
Leeder, J., Gissane, C., van Someren, K., Gregson, W., & Howatson, G. (2012). Cold water immersion and recovery from strenuous exercise: A meta-analysis. British Journal of Sports Medicine, 46(4), 233–240. https://doi.org/10.1136/bjsports-2011-090061
modèle de développement de l’athlète (n. m.) Lien copié dans le presse-papiers
Variantes régionales : France : parcours de développement de l’athlète
Bailey, R., Ford, P., MacNamara, A., & Pearce, G. (2010). Participant development in sport: An academic review (Vol. 4, pp. 1-134). Leeds: Sports Coach UK. https://research.birmingham.ac.uk/en/publications/participant-development-in-sport-an-academic-review/
Côté, J., & Hancock, D. J. (2016). Evidence-based policies for youth sport programmes. International Journal of Sport Policy and Politics, 8(1), 51–65. https://doi.org/10.1080/19406940.2014.919338
Gouvernements fédéral, provinciaux et territoriaux du Canada. (2025). Politique canadienne du sport 2025-2035. Secrétariat du sport canadien. https://ttcanada.ca/canadian-sport-policy-2025-2035-a-shared-vision-for-sport-in-canada/?lang=fr
Thibault, G., & Cléroult, M. (2019). Développement, de la découverte au sport de haut niveau. Dans R. Roult, D. Auger, & M.-A. Lavigne (dir.), Sport et société : Perspectives conceptuelles et enjeux d’action aux échelles québécoise, canadienne et internationale (pp. 133–143). Université du Québec à Trois-Rivières. www.grande-librairie.com/produit/sport-et-socit-perspectives-conceptuelles-et-enjeux-daction/
modèle de l’exercice intermittent (n. m.) Lien copié dans le presse-papiers
Briand, J., Tremblay, J., & Thibault, G. (2022). Can popular high-intensity interval training (HIIT) models lead to impossible training sessions? Sports, 10(1), Article 10. https://doi.org/10.3390/sports10010010
Jones, A. M., Burnley, M., Black, M. I., Poole, D. C., & Vanhatalo, A. (2019). The maximal metabolic steady state: Redefining the ’gold standard’. Physiological Reports, 7(10), e14098. https://doi.org/10.14814/phy2.14098
Laursen, P. B., & Jenkins, D. G. (2002). The scientific basis for high-intensity interval training. Sports Medicine, 32(1), 53–73. https://doi.org/10.2165/00007256-200232010-00003
Péronnet, F., & Thibault, G. (1989). Mathematical analysis of running performance and world running records. Journal of Applied Physiology, 67(1), 453–465. https://doi.org/10.1152/jappl.1989.67.1.453
Seiler, S., & Tønnessen, E. (2009). Intervals, thresholds, and long slow distance: The role of intensity and duration in endurance training. Sportscience, 13, 32–53. https://sportsci.org/2009/ss.htm
Skiba, P. F., Chidnok, W., Vanhatalo, A., & Jones, A. M. (2012). Modeling the expenditure and reconstitution of work capacity above critical power. Medicine & Science in Sports & Exercise, 44(8), 1526–1532. https://pubmed.ncbi.nlm.nih.gov/22382171/
Skiba, P. F., Clarke, D., Vanhatalo, A., & Jones, A. M. (2014). Validation of a novel intermittent W′ model for cycling using field data. European Journal of Applied Physiology, 114(8), 1645–1655. https://doi.org/10.1123/ijspp.2013-0471
Thibault, G. (2003). A graphical model for interval training. IAAF New Studies in Athletics, 18(3), 49–55. www.semanticscholar.org/paper/A-graphical-model-for-interval-training-Thibault/bbd3f4b27006ed7d68e6556bc073e156eae4b739
modélisation (n. f.) Lien copié dans le presse-papiers
Briand, J., Deguire, S., Gaudet, S., & Bieuzen, F. (2022). Monitoring variables influence on random forest models to forecast injuries in short-Track Speed Skating. Frontiers in Sports and Active Living, 4, 896828. www.frontiersin.org/journals/sports-and-active-living/articles/10.3389/fspor.2022.896828/full
Briand, J., di Prampero, P. E., Osgnach, C., Thibault, G., & Tremblay, J. (2025). Quantifying metabolic energy contributions in sprint running: A novel bioenergetic model. European Journal of Applied Physiology. https://doi.org/10.1007/s00421-025-05831-0
Briand, J., Mangin, T., Tremblay, J., & Pageaux, B. (2025). Bridging inductive and deductive reasoning: A proposal to enhance the evaluation and development of models in sports and exercise science. Sports Medicine. https://doi.org/10.1007/s40279-025-02289-0
Briand, J., Tremblay, J., & Thibault, G. (2022). Can popular high-intensity interval training (HIIT) models lead to impossible training sessions? Sports, 10(1), Article 10. https://doi.org/10.3390/sports10010010
Buchheit, M. (2014). Monitoring training status with HR measures: Do all roads lead to Rome? Frontiers in Physiology, 5, 73. https://doi.org/10.3389/fphys.2014.00073
di Prampero, P. E. (2003). Factors limiting maximal performance in humans. European Journal of Applied Physiology, 90(3–4), 420–429. https://doi.org/10.1007/s00421-003-0926-z
Jones, A. M., Vanhatalo, A., Burnley, M., Morton, R. H., & Poole, D. C. (2010). Critical power: Implications for determination of V̇O₂max and exercise tolerance. Medicine & Science in Sports & Exercise, 42(10), 1876–1890. https://doi.org/10.1249/MSS.0b013e3181d9cf7f
Hugh Morton, R. (1996). A 3-parameter critical power model. Ergonomics, 39(4), 611-619. https://doi.org/10.1080/00140139608964484
Péronnet, F., & Thibault, G. (1989). Mathematical analysis of running performance and world running records. Journal of Applied Physiology, 67(1), 453–465. https://doi.org/10.1152/jappl.1989.67.1.453
Skiba, P. F., Chidnok, W., Vanhatalo, A., & Jones, A. M. (2012). Modeling the expenditure and reconstitution of work capacity above critical power. Medicine & Science in Sports & Exercise, 44(8), 1526–1532. https://pubmed.ncbi.nlm.nih.gov/22382171/
moment de force (n. m.) Lien copié dans le presse-papiers
Symbole : τ
Enoka, R. M. (2025). Neuromechanics of human movement (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/neuromechanics-of-human-movement-6th-edition?srsltid=AfmBOopCF0_zJpMol3sLnzVVFNzhB_JLAIQIz1PzPhwliaCU65ZjMSIp#tab-description
Hall, S. J. (2025). Basic biomechanics (9ᵉ éd.). McGraw-Hill Education www.mheducation.com/highered/product/Basic-Biomechanics-Hall.html
monitorage (n. m.) Lien copié dans le presse-papiers
Variantes régionales : Les termes suivi, suivi de l’état d’entraînement, suivi de la charge d’entraînement, et suivi des performances sont d'usage courant au Québec pour désigner l'ensemble du processus. L'emploi du terme monitorage permet de distinguer spécifiquement l'étape de collecte de données de l'étape d'analyse et d'interprétation, qui relève de diverses formes de suivi.
Bourdon, P. C., Cardinale, M., Murray, A., Gastin, P., Kellmann, M., Varley, M. C., Gabbett, T. J., Coutts, A. J., Burgess, D. J., Gregson, W., & Cable, N. T. (2017). Monitoring Athlete Training Loads: Consensus statement. International Journal of Sports Physiology and Performance, 12(Suppl 2), S2161–S2170. https://journals.humankinetics.com/view/journals/ijspp/12/s2/article-pS2-161.xml
Halson, S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports Medicine, 44(Suppl. 2), 139–147. https://doi.org/10.1007/s40279-014-0253-z
motivation (n. f.) Lien copié dans le presse-papiers
Clancy, R. B., Herring, M. P., MacIntyre, T. E., & Campbell, M. J. (2016). A review of competitive sport motivation research. Psychology of Sport and Exercise, 27, 232–242. https://doi.org/10.1016/j.psychsport.2016.09.003
Deci, E. L., & Ryan, R. M. (2017). Self-determination theory: Basic psychological needs in motivation, development, and wellness. Guilford Press. www.guilford.com/books/Self-Determination-Theory/Ryan-Deci/9781462538966/contents?srsltid=AfmBOoqqr5pVjgoIsPpgDvRqx0Ur0Z4wr-WN90nIjT71HZ769USUgifx
Ministère de l’Éducation. (2025). La contribution de la motivation à la pratique de l’activité physique, du sport et du plein air [sic] (Direction du sport, du loisir et de l’activité physique). https://cdn-contenu.quebec.ca/cdn-contenu/education/Sport-Loisir-Plein-air/encadrement-gouvernance-gestion/Contribution-motivation-activite-physique-sport.pdf
Vallerand, R. J., & Losier, G. F. (1999). An integrative analysis of intrinsic and extrinsic motivation in sport. Journal of Applied Sport Psychology, 11(1), 142–169. www.academia.edu/9291658/Journal_of_Applied_Sport_Psychology_An_integrative_analysis_of_intrinsic_and_extrinsic_motivation_in_sport_PLEASE_SCROLL_DOWN_FOR_ARTICLE_An_Integrative_Analysis_of_Intrinsic_and_Extrinsic_Motivation_in_Sport
musculation (n. f.) Lien copié dans le presse-papiers
American College of Sports Medicine. (2009). Progression models in resistance training for healthy adults. Medicine & Science in Sports & Exercise, 41(3), 687–708. https://doi.org/10.1249/MSS.0b013e3181915670
Kraemer, W. J., & Ratamess, N. A. (2004). Fundamentals of resistance training: Progression and exercise prescription. Medicine & Science in Sports & Exercise, 36(4), 674–688. https://doi.org/10.1249/01.MSS.0000121945.36635.61
Schoenfeld, B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. Journal of Strength and Conditioning Research, 24(10), 2857–2872. https://doi.org/10.1519/JSC.0b013e3181e840f3
Zatsiorsky, V. M., & Kraemer, W. J. (2021). Science and practice of strength training (3e éd.). Human Kinetics. https://canada.humankinetics.com/products/science-and-practice-of-strength-training-3rd-edition?srsltid=AfmBOor6Czl0hJkN4jLKReyADU4ZQKFOVMcqHtOs-v8SR_2mmGbJJt9B
myotypologie (n. f.) Lien copié dans le presse-papiers
Gollnick, P. D., & Saltin, B. (1982). Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clinical Physiology, 2(1), 1–12. https://doi.org/10.1111/j.1475-097X.1982.tb00001.x
Schiaffino, S., & Reggiani, C. (2011). Fiber types in mammalian skeletal muscles. Physiological Reviews, 91(4), 1447–1531. https://doi.org/10.1152/physrev.00031.2010
nutriment (n. m.) Lien copié dans le presse-papiers
Maughan, R. (1999). Role of micronutrients in sport and physical activity. British Medical Bulletin, 55, 3, 683-90 . https://doi.org/10.1258/0007142991902556.
Maughan, R. J., & Shirreffs, S. M. (2012). Nutrition for sports performance: issues and opportunities. Proceedings of the Nutrition Society, 71(1), 112-119. https://doi.org/10.1017/S0029665111003211
perception de l’effort (n. f.) Lien copié dans le presse-papiers
Borg, E., & Kaijser, L. (2006). A comparison between three rating scales for perceived exertion and two different work tests. Scandinavian Journal of Medicine & Science in Sports, 16(1), 57–69. https://doi.org/10.1111/j.1600-0838.2005.00448.x
Pageaux, B. (2016). Perception of effort in exercise science: Definition, measurement and perspectives. European Journal of Sport Science, 16(8), 885–894. https://doi.org/10.1080/17461391.2016.1188992
périodisation de l’entraînement (n. f.) Lien copié dans le presse-papiers
Bompa, T. O., & Buzzichelli, C. (2019). Periodization: Theory and methodology of training (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/periodization-6th-edition?srsltid=AfmBOorzJxAMKa9_mXXXc34QXH5b1dNg43FEMXjZoaEUDg3EzXRvCgcD
Issurin, V. B. (2016). Benefits and limitations of block periodized training approaches to athletes’ preparation: A review. Sports Medicine, 46(3), 329–338. https://doi.org/10.1007/s40279-015-0425-5
Matveyev, L. P. (1977). Fundamentals of sports training. Progress Publishers. https://openlibrary.org/books/OL13817722M/Fundamentals_of_sports_training.
Mujika, I. (2023). Endurance training – Science and practice. Inigo Mujika Publications. https://books.google.ca/books/about/Endurance_Training.html?id=8HqT0AEACAAJ&redir_esc=y
Seiler, S., & Tønnessen, E. (2009). Intervals, thresholds, and long slow distance: The role of intensity and duration in endurance training. Sportscience, 13, 32–53. https://sportsci.org/2009/ss.htm
physiologie de l’exercice (n. f.) Lien copié dans le presse-papiers
American College of Sports Medicine. (2021). ACSM’s guidelines for exercise testing and prescription (11e éd.). Wolters Kluwer. www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
Brooks, G. A., Fahey, T. D., & Baldwin, K. M. (2019). Exercise physiology: Human bioenergetics and its applications. McGraw-Hill Education. https://books.google.ca/books/about/Exercise_Physiology.html?id=rt1MyQEACAAJ&redir_esc=y
Hargreaves, M., & Spriet, L. L. (2020). Exercise metabolism: Fuels for the fire. Cold Spring Harbor Perspectives in Medicine, 10(7), a037814. https://doi.org/10.1101/cshperspect.a029744
Joyner, M. J., & Coyle, E. F. (2008). Endurance exercise performance: The physiology of champions. Journal of Physiology, 586(1), 35–44. https://doi.org/10.1113/jphysiol.2007.143834
Kenney, W. L., Wilmore, J. H., & Costill, D. L. (2024). Physiology of sport and exercise (9e éd.). Human Kinetics. https://canada.humankinetics.com/products/physiology-of-sport-and-exercise-9th-edition-with-hkpropel-access-loose-leaf-edition?srsltid=AfmBOoob1JCFIRirj5DCpk11RfPfG-t-u0ySo6pLziceGW8xmD2RVeqL
McArdle, W. D., Katch, F. I., & Katch, V. L. (2023). Exercise physiology: nutrition, energy, and human performance (9e éd.). Wolters Kluwer. https://shop.lww.com/Exercise-Physiology/p/9781975217297
Millet, G. P., & Schmitt, L. (2024). Physiologie du sport et de l’exercice. De Boeck Supérieur. www.deboecksuperieur.com/livre/9782807358102-physiologie-du-sport-et-de-l-exercice
Powers, S. K., & Howley, E. T. (2023). Exercise physiology: Theory and application to fitness and performance (12ᵉ éd.). McGraw-Hill. www.mheducation.com/highered/product/exercise-physiology-theory-and-application-to-fitness-and-performance-powers.html
physiologie du sport (n. f.) Lien copié dans le presse-papiers
American College of Sports Medicine. (2021). ACSM’s guidelines for exercise testing and prescription (11e éd.). Wolters Kluwer. www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
Brooks, G. A., Fahey, T. D., & Baldwin, K. M. (2019). Exercise physiology: Human bioenergetics and its applications. McGraw-Hill Education. https://books.google.ca/books/about/Exercise_Physiology.html?id=rt1MyQEACAAJ&redir_esc=y
Joyner, M. J., & Coyle, E. F. (2008). Endurance exercise performance: The physiology of champions. Journal of Physiology, 586(1), 35–44. https://doi.org/10.1113/jphysiol.2007.143834
Millet, G. P., & Schmitt, L. (2024). Physiologie du sport et de l’exercice. De Boeck Supérieur. www.deboecksuperieur.com/livre/9782807358102-physiologie-du-sport-et-de-l-exercice
plateforme de force (n. f.) Lien copié dans le presse-papiers
Bobbert, M. F., & van Soest, A. J. (2001). Why do people jump the way they do? Exercise and Sport Sciences Reviews, 29(3), 95–102. https://doi.org/10.1097/00003677-200107000-00002
Enoka, R. M. (2025). Neuromechanics of human movement (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/neuromechanics-of-human-movement-6th-edition?srsltid=AfmBOopCF0_zJpMol3sLnzVVFNzhB_JLAIQIz1PzPhwliaCU65ZjMSIp#tab-description
Huurnink, A., Fransz, D., Kingma, I., & Van Dieën, J. (2013). Comparison of a laboratory grade force platform with a Nintendo Wii Balance Board on measurement of postural control in single-leg stance balance tasks. Journal of Biomechanics, 46, 7, 1392-5 . https://doi.org/10.1016/j.jbiomech.2013.02.018.
Johnson, W., Alderson, J., Lloyd, D., & Mian, A. (2019). Predicting athlete ground reaction forces and moments from spatio-temporal driven CNN models. IEEE Transactions on Biomedical Engineering, 66, 689-694. https://doi.org/10.1109/tbme.2018.2854632.
Liang, W., Wang, F., Fan, A., Zhao, W., Yao, W., & Yang, P. (2023). Extended application of inertial measurement units in biomechanics: From activity recognition to force estimation. Sensors (Basel, Switzerland), 23. https://doi.org/10.3390/s23094229.
Psycharakis, S., & Miller, S. (2006). Estimation of errors in force platform data. Research Quarterly for Exercise and Sport, 77, 514 – 518. https://doi.org/10.1080/02701367.2006.10599386.
Robles-Palazón, F., Comfort, P., Ripley, N., Herrington, L., Bramah, C., & McMahon, J. (2023). Force plate methodologies applied to injury profiling and rehabilitation in sport: A scoping review protocol. PLOS ONE, 18. https://doi.org/10.1371/journal.pone.0292487.
Taborri, J., Keogh, J., Kos, A., Santuz, A., Umek, A., Urbanczyk, C., Van Der Kruk, E., & Rossi, S. (2020). Sport biomechanics applications using inertial, force, and EMG sensors: A literature overview. Applied Bionics and Biomechanics, 2020. https://doi.org/10.1155/2020/2041549.
Walsh, M. S., Ford, K. R., Bangen, K. J., Myer, G. D., & Hewett, T. E. (2006). The validation of a portable force plate for measuring force-time data during jumping and landing tasks. Journal of Strength and Conditioning Research, 20(4), 730–734. https://doi.org/10.1519/r-18225.1
Wardoyo, S., Hutajulu, P., & Togibasa, O. (2016). A development of force plate for biomechanics analysis of standing and walking. Journal of Physics: Conference Series, 739. https://doi.org/10.1088/1742-6596/739/1/012118.
Winter, D. A. (2009). Biomechanics and motor control of human movement. John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470549148?msockid=19e7d0fdf4b9650e2062c4c6f56f64dc
pliométrie (n. f.) Lien copié dans le presse-papiers
Bobbert, M. F. (1990). Drop jumping as a training method for jumping ability. Sports Medicine, 9(1), 7–22. https://doi.org/10.2165/00007256-199009010-00002
Komi, P. V. (2000). Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. Journal of Biomechanics, 33(10), 1197–1206. https://doi.org/10.1016/S0021-9290(00)00064-6
Markovic, G., & Mikulic, P. (2010). Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Medicine, 40(10), 859–895. https://doi.org/10.2165/11318370-000000000-00000
Nicol, C., Avela, J., & Komi, P. V. (2006). The stretch-shortening cycle: A model to study naturally occurring neuromuscular fatigue. Sports Medicine, 36(11), 977–999. https://doi.org/10.2165/00007256-200636110-00004
Ramirez-Campillo, R., Moran, J., Chaabene, H., Granacher, U., & Izquierdo, M. (2018). Methodological characteristics and future directions for plyometric training research: A scoping review. Sports Medicine, 48(5), 1059–1081. https://doi.org/10.1007/s40279-018-0870-z
potentialisation post-activation (n. f.) Lien copié dans le presse-papiers
Blazevich, A. J., & Babault, N. (2019). Post-activation potentiation versus post-activation performance enhancement in humans: Historical perspective, underlying mechanisms, and current issues. Frontiers in Physiology, 10, 1359. https://doi.org/10.3389/fphys.2019.01359
Sale, D. G. (2002). Postactivation potentiation: Role in human performance. Exercise and Sport Sciences Reviews, 30(3), 138–143. https://pubmed.ncbi.nlm.nih.gov/12150573/
Seitz, L. B., & Haff, G. G. (2016). Factors modulating post-activation potentiation of jump, sprint, throw, and upper-body ballistic performances: A systematic review with meta-analysis. Sports Medicine, 46(2), 231–240. https://doi.org/10.1007/s40279-015-0415-7
Tillin, N. A., & Bishop, D. (2009). Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Medicine, 39(2), 147–166. https://doi.org/10.2165/00007256-200939020-00004
Wilson, J. M., Duncan, N. M., Marin, P. J., Brown, L. E., Loenneke, J. P., Wilson, S. M. C., … Haff, G. G. (2013). Meta-analysis of post-activation potentiation and power: Effects of conditioning activity, volume, gender, rest periods, and training status. Journal of Strength and Conditioning Research, 27(3), 854–859. https://doi.org/10.1519/JSC.0b013e31825c2bdb
préconditionnement ischémique (n. m.) Lien copié dans le presse-papiers
Incognito, A. V., Burr, J. F., & Millar, P. J. (2016). The effects of ischemic preconditioning on human exercise performance. Sports Medicine, 46(4), 531–544. https://doi.org/10.1007/s40279-015-0433-5
Paradis-Deschênes, P., Joanisse, D. R., & Billaut, F. (2016). Ischemic preconditioning increases muscle perfusion, oxygen uptake, and force in strength-trained athletes. Applied Physiology, Nutrition, and Metabolism, 41(9), 938–944. https://doi.org/10.1139/apnm-2015-0561
Paradis-Deschênes, P., Joanisse, D. R., & Billaut, F. (2016). Sex-specific impact of ischemic preconditioning on tissue oxygenation and maximal concentric force. Frontiers in Physiology, 7, 674. https://doi.org/10.3389/fphys.2016.00674
Paradis-Deschênes, P., Joanisse, D. R., & Billaut, F. (2018). Ischemic preconditioning improves time trial performance at moderate altitude. Medicine & Science in Sports & Exercise, 50(3), 533–541. https://doi.org/10.1249/MSS.0000000000001473
premier seuil ventilatoire (n. m.) Lien copié dans le presse-papiers
Faude, O., Kindermann, W., & Meyer, T. (2009). Lactate threshold concepts: How valid are they? Sports Medicine, 39(6), 469–490. https://doi.org/10.2165/00007256-200939060-00003
Keir, D. A., Fontana, F. Y., Robertson, T. C., Murias, J. M., Paterson, D. H., Kowalchuk, J. M., & Pogliaghi, S. (2015). Exercise intensity thresholds: Identifying the boundaries of sustainable performance. Medicine & Science in Sports & Exercise, 47(9), 1932–1940. https://doi.org/10.1249/MSS.0000000000000613
Millet, G. P., & Schmitt, L. (2024). Physiologie du sport et de l’exercice. De Boeck Supérieur. www.deboecksuperieur.com/livre/9782807358102-physiologie-du-sport-et-de-l-exercice
Péronnet, F., & Aguilaniu, B. (2012). Ventilation pulmonaire et alvéolaire, échanges gazeux et gaz du sang à l’exercice en rampe. Revue des maladies respiratoires, 29(8), 1017–1034. www.sciencedirect.com/science/article/abs/pii/S0761842512002690?via%3Dihub
Péronnet, F., Thibault, G., Rhodes, E. C., & McKenzie, D. (1987). Correlation between ventilatory threshold and endurance capability in marathon runners. Medicine and Science in Sports and Exercise, 19(6), 610–615. www.academia.edu/121747163/Correlation_between_ventilatory_threshold_and_endurance_capability_in_marathon_runners
préparation mentale (n. f.) Lien copié dans le presse-papiers
Birrer, D., & Morgan, G. (2010). Psychological skills training as a way to enhance an athlete’s performance in high‐intensity sports. Scandinavian Journal of Medicine & Science in Sports, 20. https://doi.org/10.1111/j.1600-0838.2010.01188.x.
Guillén, F., & Feltz, D. L. (2011). A conceptual model of coach efficacy: Preliminary investigation and instrument development. Journal of Educational Psychology, 103(3), 483–497. https://doi.org/10.1037/0022-0663.91.4.765
Reinebo, G., Alfonsson, S., Jansson-Fröjmark, M., Rozental, A., & Lundgren, T. (2023). Effects of Psychological Interventions to Enhance Athletic Performance: A Systematic Review and Meta-Analysis. Sports Medicine (Auckland, N.z.), 54, 347 – 373. https://doi.org/10.1007/s40279-023-01931-z.
préparation physique (n. f.) Lien copié dans le presse-papiers
Bompa, T. O., & Buzzichelli, C. (2019). Periodization: Theory and methodology of training (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/periodization-6th-edition?srsltid=AfmBOorzJxAMKa9_mXXXc34QXH5b1dNg43FEMXjZoaEUDg3EzXRvCgcD
Jeffreys, I., & Moody, J. (2021). Strength and conditioning for sports performance. Routledge. www.routledge.com/Strength-and-Conditioning-for-Sports-Performance/Jeffreys-Moody/p/book/9780367404635
Millet, G. P., & Schmitt, L. (2024). Physiologie du sport et de l’exercice. De Boeck Supérieur. www.deboecksuperieur.com/livre/9782807358102-physiologie-du-sport-et-de-l-exercice
Stone, M. H., Stone, M., & Sands, W. A. (2007). Principles and practice of resistance training. Human Kinetics. https://books.google.ca/books/about/Principles_and_Practice_of_Resistance_Tr.html?id=TAVtYOrT1G8C&redir_esc=y
Zatsiorsky, V. M., & Kraemer, W. J. (2021). Science and practice of strength training (3e éd.). Human Kinetics. https://canada.humankinetics.com/products/science-and-practice-of-strength-training-3rd-edition?srsltid=AfmBOor6Czl0hJkN4jLKReyADU4ZQKFOVMcqHtOs-v8SR_2mmGbJJt9B
principe d’alternance (n. m.) Lien copié dans le presse-papiers
Bompa, T. O., & Buzzichelli, C. (2019). Periodization: Theory and methodology of training (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/periodization-6th-edition?srsltid=AfmBOorzJxAMKa9_mXXXc34QXH5b1dNg43FEMXjZoaEUDg3EzXRvCgcD
Millet, G. P., & Schmitt, L. (2024). Physiologie du sport et de l’exercice. De Boeck Supérieur. www.deboecksuperieur.com/livre/9782807358102-physiologie-du-sport-et-de-l-exercice
Thibault, G. (2009). Entraînement cardio : Sports d’endurance et performance. Vélo Québec. www.velo.qc.ca/magazine/livres-guides-et-cartes/entrainement-cardio/
Zatsiorsky, V. M., & Kraemer, W. J. (2021). Science and practice of strength training (3e éd.). Human Kinetics. https://canada.humankinetics.com/products/science-and-practice-of-strength-training-3rd-edition?srsltid=AfmBOor6Czl0hJkN4jLKReyADU4ZQKFOVMcqHtOs-v8SR_2mmGbJJt9B
principe d’amélioration régressive (n. m.) Lien copié dans le presse-papiers
Bompa, T. O., & Buzzichelli, C. (2019). Periodization: Theory and methodology of training (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/periodization-6th-edition?srsltid=AfmBOorzJxAMKa9_mXXXc34QXH5b1dNg43FEMXjZoaEUDg3EzXRvCgcD
Issurin, V. B. (2016). Benefits and limitations of block periodized training approaches to athletes’ preparation: A review. Sports Medicine, 46(3), 329–338. https://doi.org/10.1007/s40279-015-0425-5
Thibault, G. (2009). Entraînement cardio : Sports d’endurance et performance. Vélo Québec. www.velo.qc.ca/magazine/livres-guides-et-cartes/entrainement-cardio/
principe d’entraînement (n. m.) Lien copié dans le presse-papiers
Bompa, T. O., & Buzzichelli, C. (2019). Periodization: Theory and methodology of training (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/periodization-6th-edition?srsltid=AfmBOorzJxAMKa9_mXXXc34QXH5b1dNg43FEMXjZoaEUDg3EzXRvCgcD
Thibault, G. (2009). Entraînement cardio : Sports d’endurance et performance. Vélo Québec. www.velo.qc.ca/magazine/livres-guides-et-cartes/entrainement-cardio/
principe d’individualisation (n. m.) Lien copié dans le presse-papiers
Bouchard, C., & Rankinen, T. (2001). Individual differences in response to regular physical activity. Medicine & Science in Sports & Exercise, 33(6 Suppl), S446–S451. https://pubmed.ncbi.nlm.nih.gov/11427769/
Joyner, M. J., & Lundby, C. (2018). Concepts about V̇O₂max and trainability are context dependent. Exercise and Sport Sciences Reviews, 46(3), 138–143. https://pubmed.ncbi.nlm.nih.gov/29912036/
Thibault, G. (2009). Entraînement cardio : Sports d’endurance et performance. Vélo Québec. www.velo.qc.ca/magazine/livres-guides-et-cartes/entrainement-cardio/
principe de périodicité (n. m.) Lien copié dans le presse-papiers
Bompa, T. O., & Buzzichelli, C. (2019). Periodization: Theory and methodology of training (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/periodization-6th-edition?srsltid=AfmBOorzJxAMKa9_mXXXc34QXH5b1dNg43FEMXjZoaEUDg3EzXRvCgcD
Issurin, V. B. (2016). Benefits and limitations of block periodized training approaches to athletes’ preparation: A review. Sports Medicine, 46(3), 329–338. https://doi.org/10.1007/s40279-015-0425-5
Thibault, G. (2009). Entraînement cardio : Sports d’endurance et performance. Vélo Québec. www.velo.qc.ca/magazine/livres-guides-et-cartes/entrainement-cardio/
principe de progressivité (n. m.) Lien copié dans le presse-papiers
American College of Sports Medicine. (2009). Progression models in resistance training for healthy adults. Medicine & Science in Sports & Exercise, 41(3), 687–708. https://doi.org/10.1249/MSS.0b013e3181915670
Jeffreys, I., & Moody, J. (2021). Strength and conditioning for sports performance. Routledge. www.routledge.com/Strength-and-Conditioning-for-Sports-Performance/Jeffreys-Moody/p/book/9780367404635
Thibault, G. (2009). Entraînement cardio : Sports d’endurance et performance. Vélo Québec. www.velo.qc.ca/magazine/livres-guides-et-cartes/entrainement-cardio/
principe de réversibilité (n. m.) Lien copié dans le presse-papiers
Mujika, I., & Padilla, S. (2000). Detraining: Loss of training-induced physiological and performance adaptations. Part I. Sports Medicine, 30(2), 79–87. https://doi.org/10.2165/00007256-200030020-00002
Mujika, I., & Padilla, S. (2000). Detraining: Loss of training-induced physiological and performance adaptations. Part II: Long term insufficient training stimulus. Sports Medicine, 30(3), 145–154. https://doi.org/10.2165/00007256-200030030-00001
Thibault, G. (2009). Entraînement cardio : Sports d’endurance et performance. Vélo Québec. www.velo.qc.ca/magazine/livres-guides-et-cartes/entrainement-cardio/
principe de spécificité (n. m.) Lien copié dans le presse-papiers
Behm, D. G., & Sale, D. G. (1993). Velocity specificity of resistance training. Sports Medicine, 15(6), 374–388. https://doi.org/10.2165/00007256-199315060-00003
Bompa, T. O., & Buzzichelli, C. (2019). Periodization: Theory and methodology of training (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/periodization-6th-edition?srsltid=AfmBOorzJxAMKa9_mXXXc34QXH5b1dNg43FEMXjZoaEUDg3EzXRvCgcD
Kellmann, M., & Beckmann, J. (2018). Recovery and well-being in sport and exercise. Routledge. www.routledge.com/Recovery-and-Well-being-in-Sport-and-Exercise/Kellmann-Beckmann/p/book/9781032191553
Matveyev, L. P. (1977). Fundamentals of sports training. Progress Publishers. https://openlibrary.org/books/OL13817722M/Fundamentals_of_sports_training.
Suchomel, T. J., Nimphius, S., & Stone, M. H. (2016). The importance of muscular strength in athletic performance. Sports Medicine, 46(10), 1419–1449. https://doi.org/10.1007/s40279-016-0486-0
Thibault, G. (2009). Entraînement cardio : Sports d’endurance et performance. Vélo Québec. www.velo.qc.ca/magazine/livres-guides-et-cartes/entrainement-cardio/
Zatsiorsky, V. M., & Kraemer, W. J. (2021). Science and practice of strength training (3e éd.). Human Kinetics. https://canada.humankinetics.com/products/science-and-practice-of-strength-training-3rd-edition?srsltid=AfmBOor6Czl0hJkN4jLKReyADU4ZQKFOVMcqHtOs-v8SR_2mmGbJJt9B
principe de surcharge (n. m.) Lien copié dans le presse-papiers
American College of Sports Medicine. (2021). ACSM’s guidelines for exercise testing and prescription (11e éd.). Wolters Kluwer. www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
Thibault, G. (2009). Entraînement cardio : Sports d’endurance et performance. Vélo Québec. www.velo.qc.ca/magazine/livres-guides-et-cartes/entrainement-cardio/
Zatsiorsky, V. M., & Kraemer, W. J. (2021). Science and practice of strength training (3e éd.). Human Kinetics. https://canada.humankinetics.com/products/science-and-practice-of-strength-training-3rd-edition?srsltid=AfmBOor6Czl0hJkN4jLKReyADU4ZQKFOVMcqHtOs-v8SR_2mmGbJJt9B
principe de surcompensation (n. m.) Lien copié dans le presse-papiers
Bompa, T. O., & Buzzichelli, C. (2019). Periodization: Theory and methodology of training (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/periodization-6th-edition?srsltid=AfmBOorzJxAMKa9_mXXXc34QXH5b1dNg43FEMXjZoaEUDg3EzXRvCgcD
Issurin, V. B. (2009). Generalized training effects induced by athletic preparation: A review. Journal of sports medicine and physical fitness, 49(4), 333. https://europepmc.org/article/med/20087292
Thibault, G. (2009). Entraînement cardio : Sports d’endurance et performance. Vélo Québec. www.velo.qc.ca/magazine/livres-guides-et-cartes/entrainement-cardio/
profil des états d’humeur (n. m.) Lien copié dans le presse-papiers
Beedie, C., Terry, P., & Lane, A. (2000). The profile of mood states and athletic performance: Two meta-analyses. Journal of Applied Sport Psychology, 12, 49 – 68. https://doi.org/10.1080/10413200008404213.
Crush, E., Frith, E., & Loprinzi, P. (2018). Experimental effects of acute exercise duration and exercise recovery on mood state. Journal of affective disorders, 229, 282-287 . https://doi.org/10.1016/j.jad.2017.12.092.
Koch, E., Tost, H., Braun, U., Gan, G., Giurgiu, M., Reinhard, I., Zipf, A., Meyer-Lindenberg, A., Ebner-Priemer, U., & Reichert, M. (2020). Relationships between incidental physical activity, exercise, and sports with subsequent mood in adolescents. Scandinavian Journal of Medicine & Science in Sports, 30, 2234 – 2250. https://doi.org/10.1111/sms.13774.
Liu, H., Liang, J., Wang, K., Zhang, T., Liu, S., & Luo, J. (2023). Mood status response to physical activity and its influence on performance: Are chronotype and exercise timing affect?. International Journal of Environmental Research and Public Health, 20. https://doi.org/10.3390/ijerph20042822.
Lochbaum, M., Zanatta, T., Kirschling, D., & May, E. (2021). The profile of moods states and athletic performance: A meta-analysis of published studies. European Journal of Investigation in Health, Psychology and Education, 11, 0 – 0. https://doi.org/10.3390/ejihpe11010005.
McGowan, R., Pierce, E., & Jordan, D. (1991). Mood alterations with a single bout of physical activity. Perceptual and Motor Skills, 72, 1203 – 1209. https://doi.org/10.2466/pms.1991.72.3c.1203.
McNair, D. M., Lorr, M., & Droppleman, L. F. (1992). Profile of Mood States (POMS) manual. Educational and Industrial Testing Service. www.scirp.org/reference/referencespapers?referenceid=205009
Skurvydas, A., Istomina, N., Dadeliene, R., Majauskiene, D., Strazdaitė, E., Lisinskienė, A., Valančienė, D., Uspuriene, A., & Sarkauskiene, A. (2024). Mood profile in men and women of all ages is improved by leisure-time physical activity rather than work-related physical activity. BMC Public Health, 24. https://doi.org/10.1186/s12889-024-17806-5.
Terry, P. C. (1995). The efficacy of mood state profiling among elite competitors: A review and synthesis. Sport Psychologist, 9(3), 309–324. https://doi.org/10.1123/tsp.9.3.309
Terry, P. C., Lane, A. M., & Fogarty, G. J. (2003). Construct validity of the Profile of Mood States—Adolescents for use with adults. Psychology of Sport and Exercise, 4(2), 125–139. https://doi.org/10.1016/S1469-0292(01)00035-8
proprioception (n. f.) Lien copié dans le presse-papiers
Enoka, R. M. (2025). Neuromechanics of human movement (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/neuromechanics-of-human-movement-6th-edition?srsltid=AfmBOopCF0_zJpMol3sLnzVVFNzhB_JLAIQIz1PzPhwliaCU65ZjMSIp#tab-description
Han, J., Waddington, G., Adams, R., Anson, J., & Liu, Y. (2016). Assessing proprioception: A critical review of methods. Journal of Sport and Health Science, 5(1), 80–90. https://doi.org/10.1016/j.jshs.2014.10.004
Lephart, S. M., & Fu, F. H. (2000). Proprioception and neuromuscular control in joint stability. Human Kinetics. https://books.google.ca/books/about/Proprioception_and_Neuromuscular_Control.html?id=yT25tBsZbbYC&redir_esc=y
Paillard, T. (2019). Posture et équilibre : évaluation, régulation et rééducation. De Boeck Supérieur. www.deboecksuperieur.com/livre/9782353273140-posture-et-equilibration-humaines
Proske, U., & Gandevia, S. C. (2012). The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiological Reviews, 92(4), 1651–1697. https://doi.org/10.1152/physrev.00048.2011
Shumway-Cook, A., & Woollacott, M. H. (2023). Motor control: Translating research into clinical practice (6ᵉ éd.). Wolters Kluwer. https://shop.lww.com/Motor-Control/p/9781975209568?srsltid=AfmBOorGywBhxDyV0KeEJyQTFynVkkuPiKWF9EOlhF43xMWRgpu9MvEh
propulsion (n. f.) Lien copié dans le presse-papiers
Bobbert, M. F., & van Soest, A. J. (2001). Why do people jump the way they do? Exercise and Sport Sciences Reviews, 29(3), 95–102. https://doi.org/10.1097/00003677-200107000-00002
Cavagna, G. A., Saibene, F. P., & Margaria, R. (1964). Mechanical work in running. Journal of Applied Physiology, 19(2), 249–256. https://doi.org/10.1152/jappl.1964.19.2.249
Enoka, R. M. (2025). Neuromechanics of human movement (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/neuromechanics-of-human-movement-6th-edition?srsltid=AfmBOopCF0_zJpMol3sLnzVVFNzhB_JLAIQIz1PzPhwliaCU65ZjMSIp#tab-description
Komi, P. V. (2000). Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. Journal of Biomechanics, 33(10), 1197–1206. https://doi.org/10.1016/S0021-9290(00)00064-6
Novacheck, T. F. (1998). The biomechanics of running. Gait & Posture, 7(1), 77–95. https://doi.org/10.1016/S0966-6362(97)00038-6
Winter, D. A. (2009). Biomechanics and motor control of human movement. John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470549148?msockid=19e7d0fdf4b9650e2062c4c6f56f64dc
psychologie du sport (n. f.) Lien copié dans le presse-papiers
compétitive, bien qu'elle s'intéresse également aux bénéfices développementaux
et sanitaires du sport.
Birrer, D., & Morgan, G. (2010). Psychological skills training as a way to enhance an athlete’s performance in high-intensity sports. Scandinavian Journal of Medicine & Science in Sports, 20(S2), 78–87. https://doi.org/10.1111/j.1600-0838.2010.01188.x
Cox, R. H. (2011). Sport psychology: Concepts and applications (7ᵉ éd.). McGraw-Hill. www.mheducation.com/highered/product/sport-psychology-concepts-and-applications-cox.html
Hardy, L., Jones, G., & Gould, D. (2018). Understanding psychological preparation for sport. Wiley. www.wiley.com/en-us/Understanding+Psychological+Preparation+for+Sport%3A+Theory+and+Practice+of+Elite+Performers-p-9780471957874
Terry, P. C., & Lane, A. M. (2004). Mood and emotion in sport. Routledge. https://research.usq.edu.au/item/9yw3v/mood-and-emotions-in-sport
Weinberg, R. S., & Gould, D. (2023). Foundations of sport and exercise psychology (8e éd.). Human Kinetics. https://books.google.ca/books?hl=en&lr=&id=GHGLEAAAQBAJ&oi=fnd&pg=PR3&dq=Weinberg,+R.+S.,+%26+Gould,+D.+(2018).+Foundations+of+sport+and+exercise+psychology+(7th+ed.).+Human+Kinetics.&ots=Ju-BXeMt5W&sig=z1DcvGcLdN8DbgjwgLQBFTa8oQA#v=onepage&q&f=false
puissance aérobie maximale (PAM) (n. f.) Lien copié dans le presse-papiers
Variantes régionales : Belgique, France, Suisse : puissance maximale aérobie (PMA); Québec : puissance aérobie maximale (PAM)
Howley, E. T., Bassett, D. R., & Welch, H. G. (1995). Criteria for maximal oxygen uptake: Review and commentary. Medicine & Science in Sports & Exercise, 27(9), 1292–1301. https://doi.org/10.1249/00005768-199509000-00009
Midgley, A. W., Mc Naughton, L. R., & Carroll, S. (2007). Physiological determinants of time to exhaustion during intermittent high-intensity running. Journal of Sports Medicine and Physical Fitness, 47(4), 347–357. https://doi.org/10.1055/s-2006-924336
Millet, G. P., & Schmitt, L. (2024). Physiologie du sport et de l’exercice. De Boeck Supérieur. www.deboecksuperieur.com/livre/9782807358102-physiologie-du-sport-et-de-l-exercice
Thibault, G. (2009). Entraînement cardio : Sports d’endurance et performance. Vélo Québec. www.velo.qc.ca/magazine/livres-guides-et-cartes/entrainement-cardio/
Wasserman, K., Hansen, J. E., Sue, D. Y., Stringer, W. W., & Whipp, B. J. (2012). Principles of exercise testing and interpretation (5e éd.). Lippincott Williams & Wilkins. www.scirp.org/reference/referencespapers?referenceid=2740009
puissance critique (n. f.) Lien copié dans le presse-papiers
Briand, J., Tremblay, J., & Thibault, G. (2022). Can popular high-intensity interval training (HIIT) models lead to impossible training sessions? Sports, 10(1), Article 10. https://doi.org/10.3390/sports10010010
Jones, A. M., & Vanhatalo, A. (2017). The ’critical power’ concept: Applications to sports performance with a focus on intermittent high-intensity exercise. Sports Medicine, 47(Suppl. 1), 65–78. https://doi.org/10.1007/s40279-017-0688-0
Morton, R. H. (2006). The critical power and related whole-body bioenergetic models. European Journal of Applied Physiology, 96(4), 339–354. https://doi.org/10.1007/s00421-005-0088-2
Skiba, P. F., Chidnok, W., Vanhatalo, A., & Jones, A. M. (2012). Modeling the expenditure and reconstitution of work capacity above critical power. Medicine & Science in Sports & Exercise, 44(8), 1526–1532. https://pubmed.ncbi.nlm.nih.gov/22382171/
Vandewalle, H., Vautier, J. F., Kachouri, M., Lechevalier, J. M., & Monod, H. (1997). Work-exhaustion time relationships and the critical power concept. A Critical Review. J Sports Med Phys Fitness, 37(2), 89–102. https://pubmed.ncbi.nlm.nih.gov/9239986/
Vanhatalo, A., Jones, A. M., & Burnley, M. (2011). Application of critical power in sport. International Journal of Sports Physiology and Performance, 6(1), 128–136. https://doi.org/10.1123/ijspp.6.1.128
puissance limite (n. f.) Lien copié dans le presse-papiers
Allen, H., & Coggan, A. R. (2019). Training and racing with a power meter (3ᵉ éd.). VeloPress. https://books.google.ca/books/about/Training_and_Racing_with_a_Power_Meter_3.html?id=-pJutgEACAAJ&redir_esc=y
Coyle, E. F. (1995). Integration of the physiological factors determining endurance performance ability. Exercise and Sport Sciences Reviews, 23(1), 25–63. https://doi.org/10.1249/00003677-199500230-00004
Jones, A. M., & Vanhatalo, A. (2017). The ’critical power’ concept: Applications to sports performance with a focus on intermittent high-intensity exercise. Sports Medicine, 47(Suppl 1), 65–78. https://doi.org/10.1007/s40279-017-0688-0
Poole, D. C., Burnley, M., Vanhatalo, A., Rossiter, H. B., & Jones, A. M. (2016). Critical power: An important fatigue threshold in exercise physiology. Medicine & Science in Sports & Exercise, 48(11), 2320–2334. https://doi.org/10.1249/mss.0000000000000939
Vanhatalo, A., Jones, A. M., & Burnley, M. (2011). Application of critical power in sport. International Journal of Sports Physiology and Performance, 6(1), 128–136. https://doi.org/10.1123/ijspp.6.1.128
puissance musculaire (n. f.) Lien copié dans le presse-papiers
Cronin, J. B., & Sleivert, G. (2005). Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Medicine, 35(3), 213–234. https://doi.org/10.2165/00007256-200535030-00003
Suchomel, T. J., Nimphius, S., & Stone, M. H. (2016). The importance of muscular strength in athletic performance. Sports Medicine, 46(10), 1419–1449. https://doi.org/10.1007/s40279-016-0486-0
puissance normalisée (n. f.) Lien copié dans le presse-papiers
Allen, H., & Coggan, A. R. (2019). Training and racing with a power meter (3ᵉ éd.). VeloPress. https://books.google.ca/books/about/Training_and_Racing_with_a_Power_Meter_3.html?id=-pJutgEACAAJ&redir_esc=y
Briand, J., Tremblay, J., & Thibault, G. (2022). Can popular high-intensity interval training (HIIT) models lead to impossible training sessions? Sports, 10(1), Article 10. https://doi.org/10.3390/sports10010010
quotient d’échanges respiratoires (QER) (n. m.) Lien copié dans le presse-papiers
Brooks, G. A., Fahey, T. D., & Baldwin, K. M. (2019). Exercise physiology: Human bioenergetics and its applications. McGraw-Hill Education. https://books.google.ca/books/about/Exercise_Physiology.html?id=rt1MyQEACAAJ&redir_esc=y
Jeukendrup, A. E., & Wallis, G. A. (2005). Measurement of substrate oxidation during exercise by means of gas exchange measurements. International Journal of Sports Medicine, 26(S1), S28–S37. https://doi.org/10.1055/s-2004-830512
McArdle, W. D., Katch, F. I., & Katch, V. L. (2023). Exercise physiology: nutrition, energy, and human performance (9e éd.). Wolters Kluwer. https://shop.lww.com/Exercise-Physiology/p/9781975217297
McClave, S. A., Lowen, C. C., Kleber, M. J., McConnell, J. W., Jung, L. Y., & Goldsmith, L. J. (2003). Clinical use of the respiratory quotient obtained from indirect calorimetry. Journal of Parenteral and Enteral Nutrition, 27(1), 21-26. https://doi.org/10.1177/014860710302700121
Millet, G. P., & Schmitt, L. (2024). Physiologie du sport et de l’exercice. De Boeck Supérieur. www.deboecksuperieur.com/livre/9782807358102-physiologie-du-sport-et-de-l-exercice
Péronnet, F., & Massicotte, D. (1991). Table of nonprotein respiratory quotient: an update. Journal Canadien Des Sciences Du Sport [Canadian Journal of Sport Sciences], 16(1), 23–29. https://pubmed.ncbi.nlm.nih.gov/1645211/
Romijn, J. A., Coyle, E. F., Sidossis, L. S., Gastaldelli, A., Horowitz, J. F., Endert, E., & Wolfe, R. R. (1993). Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. American Journal of Physiology-Endocrinology and Metabolism, 265(3), E380–E391. https://doi.org/10.1152/ajpendo.1993.265.3.E380
récupération (n. f.) Lien copié dans le presse-papiers
Bieuzen, F., Bleakley, C. M., & Costello, J. T. (2013). Contrast water therapy and exercise induced muscle damage: A systematic review and meta-analysis. PloS One, 8(4), e62356. https://pmc.ncbi.nlm.nih.gov/articles/PMC3633882/
Bompa, T. O., & Buzzichelli, C. (2019). Periodization: Theory and methodology of training (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/periodization-6th-edition?srsltid=AfmBOorzJxAMKa9_mXXXc34QXH5b1dNg43FEMXjZoaEUDg3EzXRvCgcD
Dupuy, O., Douzi, W., Theurot, D., Bosquet, L., & Dugué, B. (2018). An evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, soreness, fatigue, and inflammation: A systematic review with meta-analysis. Frontiers in Physiology, 9, 403. https://doi.org/10.3389/fphys.2018.00403
Halson, S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports Medicine, 44(S2), 139–147. https://doi.org/10.1007/s40279-014-0253-z
Kellmann, M., & Beckmann, J. (2018). Recovery and Well-Being in Sport and Exercise. Routledge. www.routledge.com/Recovery-and-Well-being-in-Sport-and-Exercise/Kellmann-Beckmann/p/book/9781032191553
Millet, G. P., & Schmitt, L. (2024). Physiologie du sport et de l’exercice. De Boeck Supérieur. www.deboecksuperieur.com/livre/9782807358102-physiologie-du-sport-et-de-l-exercice
relaxation (n. f.) Lien copié dans le presse-papiers
Birrer, D., Röthlin, P., & Morgan, G. (2012). Mindfulness to enhance athletic performance: Theoretical considerations and possible impact mechanisms. Mindfulness, 3(3), 235–246. https://doi.org/10.1007/s12671-012-0109-2
Lehrer, P. M., & Gevirtz, R. (2014). Heart rate variability biofeedback: How and why does it work? Frontiers in Psychology, 5, 756. https://doi.org/10.3389/fpsyg.2014.00756
Lehrer, P. M., Woolfolk, R. L., & Sime, W. E. (Eds.). (2021). Principles and practice of stress management (4e éd.). Guilford Press. www.guilford.com/books/Principles-and-Practice-of-Stress-Management/Lehrer-Woolfolk/9781462545100?srsltid=AfmBOorZ9u0DN6WIS8VP26kxc4ED8Ipa0q3n24wQ30KEMqh5t-SI-BlK
Weinberg, R. S., & Gould, D. (2023). Foundations of sport and exercise psychology (8e éd.). Human Kinetics. https://books.google.ca/books?hl=en&lr=&id=GHGLEAAAQBAJ&oi=fnd&pg=PR3&dq=Weinberg,+R.+S.,+%26+Gould,+D.+(2018).+Foundations+of+sport+and+exercise+psychology+(7th+ed.).+Human+Kinetics.&ots=Ju-BXeMt5W&sig=z1DcvGcLdN8DbgjwgLQBFTa8oQA#v=onepage&q&f=false
renforcement positif (n. m.) Lien copié dans le presse-papiers
Deci, E. L., & Ryan, R. M. (2000). The « What » and « Why » of Goal Pursuits: Human Needs and the Self-Determination of Behavior. Psychological Inquiry, 11(4), 227–268. https://doi.org/10.1207/S15327965PLI1104_01
Gagné, M., & Deci, E. L. (2005). Self-determination theory and work motivation. Journal of Organizational Behavior, 26(4), 331–362. https://doi.org/10.1002/job.322
Horn, T. S. (2008). Advances in sport psychology (3ᵉ éd.). Human Kinetics. https://books.google.ca/books/about/Advances_in_Sport_Psychology.html?id=wxDkz6akXiwC&redir_esc=y
Mageau, G. A., & Vallerand, R. J. (2003). The coach–athlete relationship: A motivational model. Journal of Sports Sciences, 21(11), 883–904. https://selfdeterminationtheory.org/wp-content/uploads/2014/04/2003_MageauVallerand_Coach.pdf
Magill, R. A., & Anderson, D. I. (2024). Motor learning and control: Concepts and applications. McGraw-Hill. www.mheducation.com/highered/product/motor-learning-and-control-concepts-and-applications-magill.html
Skinner, B. F. (1953). Science and human behavior. Macmillan. https://books.google.ca/books/about/Science_And_Human_Behavior.html?id=Pjjknd1HREIC&redir_esc=y
Weinberg, R. S., & Gould, D. (2023). Foundations of sport and exercise psychology (8e éd.). Human Kinetics. https://books.google.ca/books?hl=en&lr=&id=GHGLEAAAQBAJ&oi=fnd&pg=PR3&dq=Weinberg,+R.+S.,+%26+Gould,+D.+(2018).+Foundations+of+sport+and+exercise+psychology+(7th+ed.).+Human+Kinetics.&ots=Ju-BXeMt5W&sig=z1DcvGcLdN8DbgjwgLQBFTa8oQA#v=onepage&q&f=false
Wulf, G., & Lewthwaite, R. (2016). Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning. Psychonomic Bulletin & Review, 23(5), 1382–1414. https://doi.org/10.3758/s13423-015-0999-9
réserve de vitesse anaérobie (n. f.) Lien copié dans le presse-papiers
Bundle, M. W., & Weyand, P. G. (2012). Sprint exercise performance: Does metabolic power matter? Exercise and Sport Sciences Reviews, 40(3), 174–182. https://doi.org/10.1097/jes.0b013e318258e1c1
Sandford, G. N., Laursen, P. B., & Buchheit, M. (2021). Anaerobic speed/power reserve and sport performance: Scientific basis, current applications, and future directions. Sports Medicine, 51(10), 2017–2028. https://doi.org/10.1007/s40279-021-01523-9
résilience mentale (n. f.) Lien copié dans le presse-papiers
Fletcher, D., & Sarkar, M. (2012). A grounded theory of psychological resilience in Olympic champions. Psychology of Sport and Exercise, 13(5), 669–678. https://doi.org/10.1016/j.psychsport.2012.04.007
Hosseini, S. A., & Besharat, M. A. (2010). Relation of resilience with sport achievement and mental health in a sample of athletes. Procedia – Social and Behavioral Sciences, 5, 633–638. https://doi.org/10.1016/j.sbspro.2010.07.156
résistance (n. f.) Lien copié dans le presse-papiers
Hall, S. J. (2025). Basic biomechanics (9ᵉ éd.). McGraw-Hill Education. www.mheducation.com/highered/product/Basic-Biomechanics-Hall.html
Kenney, W. L., Wilmore, J. H., & Costill, D. L. (2024). Physiology of sport and exercise (9e éd.). Human Kinetics. https://canada.humankinetics.com/products/physiology-of-sport-and-exercise-9th-edition-with-hkpropel-access-loose-leaf-edition?srsltid=AfmBOoob1JCFIRirj5DCpk11RfPfG-t-u0ySo6pLziceGW8xmD2RVeqL
résistance (n. f.) Lien copié dans le presse-papiers
Hall, S. J. (2025). Basic biomechanics (9ᵉ éd.). McGraw-Hill Education. www.mheducation.com/highered/product/Basic-Biomechanics-Hall.html
Kenney, W. L., Wilmore, J. H., & Costill, D. L. (2024). Physiology of sport and exercise (9e éd.). Human Kinetics. https://canada.humankinetics.com/products/physiology-of-sport-and-exercise-9th-edition-with-hkpropel-access-loose-leaf-edition?srsltid=AfmBOoob1JCFIRirj5DCpk11RfPfG-t-u0ySo6pLziceGW8xmD2RVeqL
respiration (n. f.) Lien copié dans le presse-papiers
Kenney, W. L., Wilmore, J. H., & Costill, D. L. (2024). Physiology of sport and exercise (9e éd.). Human Kinetics. https://canada.humankinetics.com/products/physiology-of-sport-and-exercise-9th-edition-with-hkpropel-access-loose-leaf-edition?srsltid=AfmBOoob1JCFIRirj5DCpk11RfPfG-t-u0ySo6pLziceGW8xmD2RVeqL
Sheel, A. W. (2002). Respiratory muscle training in healthy individuals: physiological rationale and implications for exercise performance. Sports Medicine, 32(9), 567–581. https://link.springer.com/article/10.2165/00007256-200232090-00003
West, J. B. (2020). Respiratory physiology: The essentials (10e éd.). Wolters Kluwer. https://shop.lww.com/West-s-Respiratory-Physiology/p/9781975139186?srsltid=AfmBOopMhg8cfNXm8B2FYCD7rwWmIHDAcusaPk2VVZjlkm2YsNKHJ5Gu
saut en contre-mouvement (n. m.) Lien copié dans le presse-papiers
Claudino, J. G., et al. (2017). The countermovement jump to monitor neuromuscular status: A meta-analysis. Journal of Science and Medicine in Sport, 20(4), 397–402. https://doi.org/10.1016/j.jsams.2016.08.011
Markovic, G., & Mikulic, P. (2010). Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Medicine, 40(10), 859–895. https://doi.org/10.2165/11318370-000000000-00000
second seuil ventilatoire (n. m.) Lien copié dans le presse-papiers
Faude, O., Kindermann, W., & Meyer, T. (2009). Lactate threshold concepts: How valid are they? Sports Medicine, 39(6), 469–490. https://doi.org/10.2165/00007256-200939060-00003
Keir, D. A., Fontana, F. Y., Robertson, T. C., Murias, J. M., Paterson, D. H., Kowalchuk, J. M., & Pogliaghi, S. (2015). Exercise intensity thresholds: Identifying the boundaries of sustainable performance. Medicine & Science in Sports & Exercise, 47(9), 1932–1940. https://doi.org/10.1249/MSS.0000000000000613
Millet, G. P., & Schmitt, L. (2024). Physiologie du sport et de l’exercice. De Boeck Supérieur. www.deboecksuperieur.com/livre/9782807358102-physiologie-du-sport-et-de-l-exercice
Péronnet, F., & Aguilaniu, B. (2012). Ventilation pulmonaire et alvéolaire, échanges gazeux et gaz du sang à l’exercice en rampe. Revue des maladies respiratoires, 29(8), 1017–1034. www.sciencedirect.com/science/article/abs/pii/S0761842512002690?via%3Dihub
Péronnet, F., Thibault, G., Rhodes, E. C., & McKenzie, D. (1987). Correlation between ventilatory threshold and endurance capability in marathon runners. Medicine and Science in Sports and Exercise, 19(6), 610–615. www.academia.edu/121747163/Correlation_between_ventilatory_threshold_and_endurance_capability_in_marathon_runners
seuil anaérobie (n. m.) Lien copié dans le presse-papiers
seuils lactiques (n. m. pl.) Lien copié dans le presse-papiers
Brooks, G. A. (2021). The “anaerobic threshold” concept is not valid in physiology and medicine. Medicine and Science in Sports and Exercise, 53(5), 1093–1096. https://doi.org/10.1249/MSS.0000000000002549
Brooks, G. A., Arevalo, J. A., Osmond, A. D., Leija, R. G., Curl, C. C., & Tovar, A. P. (2021). Lactate in contemporary biology: A phoenix risen. The Journal of Physiology. https://doi.org/10.1113/JP280955
Faude, O., Kindermann, W., & Meyer, T. (2009). Lactate threshold concepts: How valid are they? Sports Medicine, 39(6), 469–490. https://doi.org/10.2165/00007256-200939060-00003
Poole, D. C., Rossiter, H. B., Brooks, G. A., & Gladden, L. B. (2021). The anaerobic threshold: 50+ years of controversy. The Journal of Physiology, 599(3), 737–767. https://doi.org/10.1113/JP279963
Millet, G. P., & Schmitt, L. (2024). Physiologie du sport et de l’exercice. De Boeck Supérieur. www.deboecksuperieur.com/livre/9782807358102-physiologie-du-sport-et-de-l-exercice
Skinner, J. S., & McLellan, T. H. (1980). The transition from aerobic to anaerobic metabolism. Research Quarterly for Exercise and Sport, 51(1), 234–248. https://doi.org/10.1080/02701367.1980.10609285
Wasserman, K., Whipp, B. J., Koyal, S. N., & Beaver, W. L. (1973). Anaerobic threshold and respiratory gas exchange during exercise. Journal of Applied Physiology, 35(2), 236–243. https://doi.org/10.1152/jappl.1973.35.2.236
spécialisation (n. f.) Lien copié dans le presse-papiers
Bailey, R., & Collins, D. (2013). The standard model of talent development and its discontents. Kinesiology Review, 2(4), 248–259. https://doi.org/10.1123/krj.2.4.248
Baker, J., Cobley, S., & Fraser-Thomas, J. (2009). What do we know about early sport specialization? High Ability Studies, 20(1), 77–89. https://doi.org/10.1080/13598130902860507
Bergeron, M. F., Mountjoy, M., Armstrong, N., Chia, M., Côté, J., Emery, C. A., … & Engebretsen, L. (2015). International Olympic Committee consensus statement on youth athletic development. British Journal of Sports Medicine, 49(13), 843–851. https://doi.org/10.1136/bjsports-2015-094962
Côté, J., & Vierimaa, M. (2014). The developmental model of sport participation: 15 years after its first conceptualization. Science & Sports, 29(S1), S63–S69. https://doi.org/10.1016/j.scispo.2014.08.133
Malina, R. M. (2010). Early sport specialization: Roots, effectiveness, risks. Current Sports Medicine Reports, 9(6), 364–371. https://doi.org/10.1249/jsr.0b013e3181fe3166B)
Myer, G. D., Jayanthi, N., Difiori, J. P., Faigenbaum, A. D., Kiefer, A. W., Logerstedt, D., & Micheli, L. J. (2015). Sports specialization, part I: Does early sports specialization increase negative outcomes and reduce the opportunity for success in young athletes? Sports Health, 7(5), 437–442. https://doi.org/10.1177/1941738115598747
spectroscopie dans le proche infrarouge (n. f.) Lien copié dans le presse-papiers
Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage, 63(2), 921-935. https://doi.org/10.1016/j.neuroimage.2012.03.049
Hamaoka, T., McCully, K. K., Niw ayama, M., & Chance, B. (2011). The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments. Philosophical Transactions of the Royal Society A, 369(1955), 4591-4604. https://doi.org/10.1098/rsta.2011.0298
Perrey, S., & Ferrari, M. (2018). Muscle oximetry in sports science: A systematic review. Sports Medicine, 48(3), 597–616. https://doi.org/10.1007/s40279-017-0820-1
Roggo, Y., Chalus, P., Maurer, L., Lema-Martinez, C., Edmond, A., & Jent, N. (2007). A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. Journal of Pharmaceutical and Biomedical Analysis, 44(3), 683-700. https://doi.org/10.1016/j.jpba.2007.03.023
sport amateur (n. m.) Lien copié dans le presse-papiers
Houlihan, B., & Green, M. (2024). Comparative elite sport development: Systems, structures and public policy. Routledge. www.routledge.com/Comparative-Elite-Sport-Development-Systems-Structures-and-Public-Policy/Grix-Brannagan-Houlihan/p/book/9781032044316
Mutter, F., & Pawlowski, T. (2014). Role models in sports : Can success in professional sports increase the demand for amateur sport participation?. Sport Management Review, 17, 324-336. https://doi.org/10.1016/j.smr.2013.07.003.
sport de haut niveau (n. m.) Lien copié dans le presse-papiers
Andersen, S. S., Houlihan, B., & Ronglan, L. T. (2015). Managing elite sport systems: Research and practice. Routledge. www.routledge.com/Managing-Elite-Sport-Systems-Research-and-Practice/Andersen-Ronglan-Houlihan/p/book/9781138633575
De Bosscher, V., Shibli, S., Westerbeek, H., & van Bottenburg, M. (2015). Successful elite sport policies: An international comparison of the sports policy factors leading to international sporting success (SPLISS 2.0). Meyer & Meyer Sport. https://books.google.ca/books/about/Successful_Elite_Sport_Policies.html?id=1TZ3CgAAQBAJ&redir_esc=y
Durand-Bush, N., & Salmela, J. H. (2002). The development and maintenance of expert athletic performance: Perceptions of world and Olympic champions. Journal of Applied Sport Psychology, 14(3), 154–171. https://doi.org/10.1080/10413200290103473
Gouvernements fédéral, provinciaux et territoriaux du Canada. (2025). Politique canadienne du sport 2025-2035. Secrétariat du sport canadien. https://ttcanada.ca/canadian-sport-policy-2025-2035-a-shared-vision-for-sport-in-canada/?lang=fr
stratégie (n. f.) Lien copié dans le presse-papiers
Grehaigne, J.-F., Godbout, P., & Bouthier, D. (2001). The teaching and learning of decision making in team sports. Quest, 53(1), 59–76. https://doi.org/10.1080/00336297.2001.10491730
Martens, R. (2012). Successful coaching (4e éd.). Human Kinetics. https://canada.humankinetics.com/products/successful-coaching-4th-edition?srsltid=AfmBOorMpTOePBCR9b07D4fEX6Smy5m8nZnYbRvKhKPVm9Qo9iNeZKTs
stress (n. m.) Lien copié dans le presse-papiers
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87(3), 873–904. https://doi.org/10.1152/physrev.00041.2006
McEwen, B. S., & Akil, H. (2020). Revisiting the stress concept: Implications for affective disorders. Journal of Neuroscience, 40(1), 12–21. https://doi.org/10.1523/JNEUROSCI.0733-19.2019
Selye, H. (1975). Stress without distress. J.B. Lippincott. https://doi.org/10.1007/978-1-4684-2238-2_9
substrat énergétique (n. m.) Lien copié dans le presse-papiers
Alghannam, A., Ghaith, M., & Alhussain, M. (2021). Regulation of energy substrate metabolism in endurance exercise. International Journal of Environmental Research and Public Health, 18. https://doi.org/10.3390/ijerph18094963.
Brooks, G. A., Fahey, T. D., & Baldwin, K. M. (2019). Exercise physiology: Human bioenergetics and its applications. McGraw-Hill Education. https://books.google.ca/books/about/Exercise_Physiology.html?id=rt1MyQEACAAJ&redir_esc=y
Close, G., Hamilton, D., Philp, A., Burke, L., & Morton, J. (2016). New strategies in sport nutrition to increase exercise performance. Free Radical Biology & Medicine, 98, 144-158 . https://doi.org/10.1016/j.freeradbiomed.2016.01.016.
Hargreaves, M., & Spriet, L. (2018). Exercise metabolism: Fuels for the fire. Cold Spring Harbor perspectives in medicine, 8, 8. https://doi.org/10.1101/cshperspect.a029744.
Hargreaves, M., & Spriet, L. (2020). Skeletal muscle energy metabolism during exercise. Nature Metabolism, 2, 817 – 828. https://doi.org/10.1038/s42255-020-0251-4.
Mata, F., Valenzuela, P., Gimenez, J., Tur, C., Ferreria, D., Domínguez, R., Sánchez-Oliver, A., & Sanz, J. (2019). Carbohydrate availability and physical performance: Physiological overview and practical recommendations. Nutrients, 11. https://doi.org/10.3390/nu11051084.
McArdle, W. D., Katch, F. I., & Katch, V. L. (2023). Exercise physiology: nutrition, energy, and human performance (9e éd.). Wolters Kluwer. https://shop.lww.com/Exercise-Physiology/p/9781975217297
Ormsbee, M., Bach, C., & Baur, D. (2014). Pre-exercise nutrition: The role of macronutrients, modified starches and supplements on metabolism and endurance performance. Nutrients, 6, 1782 – 1808. https://doi.org/10.3390/nu6051782.
Spriet, L. (2014). New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Medicine (Auckland, N.-Z.), 44, 87 – 96. https://doi.org/10.1007/s40279-014-0154-1.
suivi de l’état d’entraînement (n. m.) Lien copié dans le presse-papiers
Bourdon, P. C., Cardinale, M., Murray, A., Gastin, P., Kellmann, M., Varley, M. C., Gabbett, T. J., Coutts, A. J., Burgess, D. J., Gregson, W., & Cable, N. T. (2017). Monitoring athlete training loads: Consensus statement. International Journal of Sports Physiology and Performance, 12(Suppl 2), S2161–S2170. https://journals.humankinetics.com/view/journals/ijspp/12/s2/article-pS2-161.xml
Halson, S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports Medicine, 44(Suppl. 2), 139–147. https://doi.org/10.1007/s40279-014-0253-z
suivi de la charge d’entraînement (n. m.) Lien copié dans le presse-papiers
Bourdon, P. C., Cardinale, M., Murray, A., Gastin, P., Kellmann, M., Varley, M. C., Gabbett, T. J., Coutts, A. J., Burgess, D. J., Gregson, W., & Cable, N. T. (2017). Monitoring athlete training loads: Consensus statement. International Journal of Sports Physiology and Performance, 12(Suppl 2), S2161–S2170. https://journals.humankinetics.com/view/journals/ijspp/12/s2/article-pS2-161.xml
Impellizzeri, F. M., et al. (2019). Internal and external training load: 15 years on. International Journal of Sports Physiology and Performance, 14(2), 270–273. https://doi.org/10.1123/ijspp.2018-0935
suivi des performances (n. m.) Lien copié dans le presse-papiers
Bourdon, P. C., Cardinale, M., Murray, A., Gastin, P., Kellmann, M., Varley, M. C., Gabbett, T. J., Coutts, A. J., Burgess, D. J., Gregson, W., & Cable, N. T. (2017). Monitoring athlete training loads: Consensus statement. International Journal of Sports Physiology and Performance, 12(Suppl 2), S2161–S2170. https://journals.humankinetics.com/view/journals/ijspp/12/s2/article-pS2-161.xml
Coutts, A. J., Wallace, L. K., & Slattery, K. M. (2007). Monitoring changes in performance, physiology, biochemistry, and psychology during overreaching and recovery in triathletes. International Journal of Sports Medicine, 28(02), 125-134. https://doi.org/10.1055/s-2006-924146
Halson, S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports Medicine, 44(Suppl. 2), 139–147. https://doi.org/10.1007/s40279-014-0253-z
supplément alimentaire (n. m.) Lien copié dans le presse-papiers
Variantes régionales : France/Belgique : complément alimentaire; Québec : supplément alimentaire.
Maughan, R. J., Burke, L. M., Dvorak, J., Larson-Meyer, D. E., Peeling, P., Phillips, S. M., … Engebretsen, L. (2018). IOC consensus statement: Dietary supplements and the high-performance athlete. British Journal of Sports Medicine, 52(7), 439–455. https://doi.org/10.1136/bjsports-2018-099027
U.S. Food and Drug Administration (FDA). (2022). Dietary supplements. www.fda.gov/food/dietary-supplements
surentraînement (n. m.) Lien copié dans le presse-papiers
Budgett, R. (1998). Fatigue and underperformance in athletes: The overtraining syndrome. British Journal of Sports Medicine, 32(2), 107–110. https://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC1756078&blobtype=pdf
Kellmann, M. (2010). Preventing overtraining in athletes in high-intensity sports and stress/recovery monitoring. Scandinavian Journal of Medicine & Science in Sports, 20(S2), 95–102. https://doi.org/10.1111/j.1600-0838.2010.01192.x
Kreher, J. B., & Schwartz, J. B. (2012). Overtraining syndrome: A practical guide. Sports Health, 4(2), 128–138. https://doi.org/10.1177/1941738111434406
syndrome de surentraînement (n. m.) Lien copié dans le presse-papiers
Budgett, R. (1998). Fatigue and underperformance in athletes: The overtraining syndrome. British Journal of Sports Medicine, 32(2), 107–110. https://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC1756078&blobtype=pdf
Kreher, J. B., & Schwartz, J. B. (2012). Overtraining syndrome: A practical guide. Sports Health, 4(2), 128–138. https://doi.org/10.1177/1941738111434406
Meeusen, R., Duclos, M., Foster, C., Fry, A., Gleeson, M., Nieman, D., … European College of Sport Science. (2013). Prevention, diagnosis and treatment of the overtraining syndrome: Joint consensus statement. European Journal of Sport Science, 13(1), 1–24. https://doi.org/10.1080/17461391.2012.730061
tactique (n. f.) Lien copié dans le presse-papiers
Gréhaigne, J.-F., Bouthier, D., & David, B. (1997). Dynamic systems analysis of opposition games. Journal of Sports Sciences, 15(2), 137–149. https://doi.org/10.1080/026404197367416
Grehaigne, J.-F., Godbout, P., & Bouthier, D. (1999). The foundations of tactics and strategy in team sports. Journal of Teaching in Physical Education, 18(2), 159-174. https://doi.org/10.1123/jtpe.18.2.159
Gréhaigne, J. F., & Godbout, P. (2014). Dynamic systems theory and team sport coaching. Quest, 66(1), 96-116. https://doi.org/10.1080/00336297.2013.814577
Memmert, D., & Perl, J. (2009). Game creativity analysis using neural networks. Journal of Sports Sciences, 27(2), 139–149. https://doi.org/10.1080/02640410802442007
temps de contact au sol (n. m.) Lien copié dans le presse-papiers
Morin, J.-B., & Samozino, P. (2016). Interpreting power-force-velocity profiles for individualized and specific training. International Journal of Sports Physiology and Performance, 11(2), 267–272. https://doi.org/10.1123/ijspp.2015-0638
Paavolainen, L. M., et al. (1999). Explosive-strength training improves 5-km running time by improving running economy and muscle power. Journal of Applied Physiology, 86(5), 1527–1533. https://doi.org/10.1152/jappl.1999.86.5.1527
temps de réaction (n. m.) Lien copié dans le presse-papiers
Eckner, J. T., Whitacre, R. D., Kirsch, N. L., Richardson, J. K. (2009). Evaluating a clinical measure of reaction time: An observational study. Perceptual and Motor Skills, 108(3), 717–720. https://doi.org/10.2466/pms.108.3.717-720
Magill, R. A., & Anderson, D. I. (2024). Motor learning and control: Concepts and applications. McGraw-Hill. www.mheducation.com/highered/product/motor-learning-and-control-concepts-and-applications-magill.html
Schmidt, R. A., Lee, T. D., Winstein, C., Wulf, G., & Zelaznik, H. (2019). Motor control and learning: A behavioral emphasis (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/motor-control-and-learning-6th-edition-with-web-resource?srsltid=AfmBOorBzNiAN0aV-0EXDKXvgZbzmIl1ZA7dGw9tiRou2aFnOEaJS_mc
test de terrain (n. m.) Lien copié dans le presse-papiers
Bangsbo, J., Iaia, F. M., & Krustrup, P. (2008). The Yo-Yo intermittent recovery test: A useful tool for evaluation of physical performance in intermittent sports. Sports Medicine, 38(1), 37–51. https://doi.org/10.2165/00007256-200838010-00004
Buchheit, M. (2008). The 30-15 intermittent fitness test: Accuracy for individualizing interval training of young intermittent sport players. Journal of Strength and Conditioning Research, 22(2), 365–374. https://doi.org/10.1519/JSC.0b013e3181635b2e
Currell, K., & Jeukendrup, A. (2008). Validity, reliability and sensitivity of measures of sporting performance. Sports Medicine (Auckland, N.-Z.), 38(4), 297–316. https://link.springer.com/article/10.2165/00007256-200838040-00003
test physiologique d’effort (n. m.) Lien copié dans le presse-papiers
Howley, E. T., Bassett, D. R., & Welch, H. G. (1995). Criteria for maximal oxygen uptake: Review and commentary. Medicine & Science in Sports & Exercise, 27(9), 1292–1301. https://doi.org/10.1249/00005768-199509000-00009
Midgley, A. W., Mc Naughton, L. R., & Carroll, S. (2007). Physiological determinants of time to exhaustion during intermittent high-intensity running. Journal of Sports Medicine and Physical Fitness, 47(4), 347–357. https://doi.org/10.1055/s-2006-924336
Wasserman, K., Hansen, J. E., Sue, D. Y., Stringer, W. W., & Whipp, B. J. (2012). Principles of exercise testing and interpretation (5e éd.). Lippincott Williams & Wilkins. www.scirp.org/reference/referencespapers?referenceid=2740009
thermorégulation (n. f.) Lien copié dans le presse-papiers
Gagnon, D., & Kenny, G. P. (2012). Does sex have an independent effect on thermoeffector responses during exercise in the heat? Journal of Physiology, 590(23), 5963–5973. https://doi.org/10.1113/jphysiol.2012.240739
González-Alonso, J. (2012). Human thermoregulation and the cardiovascular system. Experimental Physiology, 97(3), 340–346. https://doi.org/10.1113/expphysiol.2011.058701
Nybo, L., & Nielsen, B. (2001). Hyperthermia and central fatigue during prolonged exercise in humans. Journal of Applied Physiology, 91(3), 1055–1060. https://doi.org/10.1152/jappl.2001.91.3.1055
tissu adipeux (n. m.) Lien copié dans le presse-papiers
Lafontan, M., & Langin, D. (2009). Lipolysis and lipid mobilization in human adipose tissue. Progress in Lipid Research, 48(5), 275–297. https://doi.org/10.1016/j.plipres.2009.05.001
Rosen, E. D., & Spiegelman, B. M. (2014). What we talk about when we talk about fat. Cell, 156(1-2), 20–44. https://doi.org/10.1016/j.cell.2013.12.012
Scheja, L., & Heeren, J. (2019). The endocrine function of adipose tissues in health and cardiometabolic disease. Nature Reviews Endocrinology, 15(9), 507–524. https://doi.org/10.1038/s41574-019-0230-6
triade de l’athlète féminine (n. f.) Lien copié dans le presse-papiers
De Souza, M. J., Nattiv, A., Joy, E., et al. (2014). 2014 Female athlete triad coalition consensus statement. British Journal of Sports Medicine, 48(4), 289. https://doi.org/10.1136/bjsports-2013-093218
Mountjoy, M., Sundgot-Borgen, J., Burke, L., et al. (2018). IOC consensus statement on relative energy deficiency in sport (RED-S). British Journal of Sports Medicine, 52(11), 687–697. https://doi.org/10.1136/bjsports-2018-099193
Nattiv, A., et al. (2007). American College of Sports Medicine position stand: The female athlete triad. Medicine & Science in Sports & Exercise, 39(10), 1867–1882. https://doi.org/10.1249/mss.0b013e318149f111
unité motrice (n. f.) Lien copié dans le presse-papiers
Enoka, R. M. (2025). Neuromechanics of human movement (6e éd.). Human Kinetics. https://canada.humankinetics.com/products/neuromechanics-of-human-movement-6th-edition?srsltid=AfmBOopCF0_zJpMol3sLnzVVFNzhB_JLAIQIz1PzPhwliaCU65ZjMSIp#tab-description
Enoka, R. M., & Duchateau, J. (2017). Rate coding and the control of muscle force. Cold Spring Harbor Perspectives in Medicine, 7(10), a029702. https://pubmed.ncbi.nlm.nih.gov/28348173/
Heckman, C. J., & Enoka, R. M. (2012). Motor unit. Comprehensive Physiology, 2(4), 2629–2682. https://doi.org/10.1002/cphy.c100087
variabilité de la fréquence cardiaque (n. f.) Lien copié dans le presse-papiers
Plews, D. J., Laursen, P. B., Stanley, J., Kilding, A. E., & Buchheit, M. (2013). Training adaptation and heart rate variability in elite endurance athletes: Opening the door to effective monitoring. Sports Medicine, 43(9), 773–781. https://doi.org/10.1007/s40279-013-0071-8
Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258
Stanley, J., Peake, J. M., & Buchheit, M. (2013). Cardiac parasympathetic reactivation following exercise: Implications for training prescription. Sports Medicine, 43(12), 1259–1277. https://doi.org/10.1007/s40279-013-0083-4
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5), 1043–1065. www.ahajournals.org/doi/full/10.1161/01.cir.93.5.1043
ventilation pulmonaire (n. f.) Lien copié dans le presse-papiers
Levitzky, M. G. (2013). Pulmonary physiology (8e éd.). McGraw-Hill. www.mheducation.com/highered/mhp/product/pulmonary-physiology-eighth-edition.html
Powers, S. K., & Howley, E. T. (2023). Exercise Physiology: Theory and Application to Fitness and Performance (12ᵉ éd.). McGraw-Hill. www.mheducation.com/highered/product/exercise-physiology-theory-and-application-to-fitness-and-performance-powers.html
Wasserman, K., Hansen, J. E., Sue, D. Y., Stringer, W. W., & Whipp, B. J. (2012). Principles of exercise testing and interpretation (5e éd.). Lippincott Williams & Wilkins. www.scirp.org/reference/referencespapers?referenceid=2740009
West, J. B. (2020). Respiratory physiology: The essentials (10e éd.). Wolters Kluwer. https://shop.lww.com/West-s-Respiratory-Physiology/p/9781975139186?srsltid=AfmBOopMhg8cfNXm8B2FYCD7rwWmIHDAcusaPk2VVZjlkm2YsNKHJ5Gu
visualisation (n. f.) Lien copié dans le presse-papiers
Variantes régionales : Québec : visualisation; France : imagerie mentale
Cumming, J., & Williams, S. E. (2012). The role of imagery in performance. The Oxford handbook of sport and performance psychology, 213. Oxford University Press. https://books.google.ca/books?hl=en&lr=&id=BVsALG2k-uoC&oi=fnd&pg=PA213&dq=Cumming,+J.,+%26+Williams,+S.+E.+(2012).+The+role+of+imagery+in+performance.+In+S.+Murphy+(Ed.),+The+Oxford+handbook+of+sport+and+performance+psychology+(pp.+213%E2%80%93232).+Oxford+University+Press.&ots=uz69jx_LgR&sig=h8_mToUmG55sDENTKybmp8UgEUs#v=onepage&q&f=false
Guillot, A., & Collet, C. (2008). Construction of the motor imagery integrative model in sport: A review and theoretical investigation of motor imagery use. International Review of Sport and Exercise Psychology, 1(1), 31–44. https://doi.org/10.1080/17509840701823139
vitesse aérobie maximale (VAM) (n. f.) Lien copié dans le presse-papiers
Variantes régionales : Belgique, France, Suisse : vitesse maximale aérobie (VMA); Québec : vitesse aérobie maximale (VAM)
Léger, L., & Boucher, R. (1980). An indirect continuous running multistage field test: The Université de Montréal Track Test. Canadian Journal of Applied Sport Sciences, 5(2), 77–84. https://europepmc.org/article/med/7389053
Léger, L., & Mercier, D. (1984). Gross energy cost of horizontal treadmill and track running. Sports Medicine, 1(4), 270–277. https://doi.org/10.2165/00007256-198401040-00003
Millet, G. P., & Schmitt, L. (2024). Physiologie du sport et de l’exercice. De Boeck Supérieur. www.deboecksuperieur.com/livre/9782807358102-physiologie-du-sport-et-de-l-exercice
volume d’éjection systolique (n. m.) Lien copié dans le presse-papiers
Fagard, R. H. (2003). Athlete’s heart. Heart, 89(12), 1455–1461. https://doi.org/10.1136/heart.89.12.1455
Guyton, A. C., & Hall, J. E. (2020). Textbook of medical physiology (14e éd.). Elsevier. https://shop.elsevier.com/books/guyton-and-hall-textbook-of-medical-physiology/hall/978-0-323-59712-8
volume d’entraînement (n. m.) Lien copié dans le presse-papiers
Impellizzeri, F. M., & Marcora, S. M. (2009). Test validation in sport physiology: Lessons learned from clinimetrics. International Journal of Sports Physiology and Performance, 4(2), 269–277. https://doi.org/10.1123/ijspp.4.2.269
Impellizzeri, F. M., Marcora, S. M., & Coutts, A. J. (2019). Internal and external training load: 15 years on. International Journal of Sports Physiology and Performance, 14(2), 270–273. https://doi.org/10.1123/ijspp.2018-0935
Kraemer, W. J., & Ratamess, N. A. (2004). Fundamentals of resistance training: Progression and exercise prescription. Medicine & Science in Sports & Exercise, 36(4), 674–688. https://doi.org/10.1249/01.MSS.0000121945.36635.61
zone d’intensité d’entraînement (n. f.) Lien copié dans le presse-papiers
Jeukendrup, A. E., & Van Diemen, A. (1998). Heart rate monitoring during training and competition in cyclists. Journal of Sports Sciences, 16(S1), S91–S99.
McArdle, W. D., Katch, F. I., & Katch, V. L. (2023). Exercise physiology: nutrition, energy, and human performance (9e éd.). Wolters Kluwer. https://shop.lww.com/Exercise-Physiology/p/9781975217297
Winter, E. M., Jones, A. M., Davison, R. C. R., Bromley, P. D., & Mercer, T. H. (Eds.). (2022). Sport and exercise physiology testing guidelines: Volume I – Sport testing. Routledge. www.routledge.com/Sport-and-Exercise-Physiology-Testing-Guidelines-Volume-I—Sport-Testing-The-British-Association-of-Sport-and-Exercise-Sciences-Guide/Davison-Smith-Hopker-Price-Hettinga-Tew-Bottoms/p/book/9780367491338